Telecom-band polarization-entangled photon- pair source has been widely used in quantum communi- cation due to its acceptable transmission loss. It is also used in cooperation with wavelength-division multiplexing (...Telecom-band polarization-entangled photon- pair source has been widely used in quantum communi- cation due to its acceptable transmission loss. It is also used in cooperation with wavelength-division multiplexing (WDM) to construct entanglement distributor. However, previous schemes generally are not suitable for multinode scenario. In this paper, we construct a telecom-band po- larization-entangled photon-pair source, and it shows ul- trahigh fidelity and concurrence which are both greater than 90 % (raw data). Moreover, we set up a four-by-four entanglement distributor based on WDM. We check the 16 Clauser-Horne-Shimony-Holt inequalities, which show nonlocality. Lastly, as an example of practical application of this source, we estimate the quantum bit error rates and quantum secret key rates when it is used in quantum key distribution. Furthermore, the transmission of entanglement in long optical fibers is also demonstrated.展开更多
We propose a novel quantum key distribution scheme by using the SAM-OAM hybrid entangled state as the physical resource.To obtain this state,the polarization entangled photon pairs are created by the spontaneous param...We propose a novel quantum key distribution scheme by using the SAM-OAM hybrid entangled state as the physical resource.To obtain this state,the polarization entangled photon pairs are created by the spontaneous parametric down conversion process,and then,the q-plate acts as a SAM-to-OAM transverter to transform the polarization entangled pairs into the hybrid entangled pattern,which opens the possibility to exploit the features of the higher-dimensional space of OAM state to encode information.In the manipulation and encoding process,Alice performs the SAM measurement by modulating the polarization stateπ lθx on one photon,whereas Bob modulates the OAM sector state lx' on the other photon to encode his key elements using the designed holograms which is implemented by the computer-controlled SLM.With coincidence measurement,Alice could extract the key information.It is showed that N-based keys can be encoded with each pair of entangled photon,and this scheme is robust against Eve’s individual attack.Also,the MUBs are not used.Alice and Bob do not need the classical communication for the key recovery.展开更多
Quantum networks strongly depend on the efficient interactions between flying photonic quantum bits and local long-lived atomic matter nodes. To achieve the efficient quantum interfaces between polarization-encoding p...Quantum networks strongly depend on the efficient interactions between flying photonic quantum bits and local long-lived atomic matter nodes. To achieve the efficient quantum interfaces between polarization-encoding photons and spin-encoding atoms, polarization-entangled paired photons with a bandwidth narrower than the natural linewidth of the atoms are highly required. In this paper, we review the generation of subnatural-linewidth polarization-entangled paired photons through spontaneous four-wave mixing with cold atoms, which is very suitable for the application of quantum ne^orks.展开更多
We report an experimental generation of polarization-entangled photon pairs in a cold atomic ensemble. A single Stokes photon and one spin-wave excitation are simultaneously created via spontaneous Raman scattering. T...We report an experimental generation of polarization-entangled photon pairs in a cold atomic ensemble. A single Stokes photon and one spin-wave excitation are simultaneously created via spontaneous Raman scattering. The spin-wave excitation is then converted into an anti-Stokes photon via an electromagnetic-induced-transparency reading process. The measured cross-correlation functions between the Stokes and anti-Stokes photons for two orthogonal polarizations are -75 and 74, respectively, at a generation rate of the photon pair of -60/s. Based on such correlations, we obtain polarization-entangled photon pairs, whose Bell parameter is S = 2.77 4- 0.01, violating Bell-CHSH inequality by -77 standard deviations. The presented polarization-entangled photon source has high entanglement degree and fast generation rate, which will promise us to apply it in future quantum repeater.展开更多
基金This work was supported by the National Nat- ural Science Foundation of China (61327901, 61490711, 11274289, 11325419, 11374288 and 11104261), the National Basic Research Program of China (2011CB921200), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB01030300), the National Science Ftmd for Distinguished Young Scholars (61225025), and the Fundamental Research Funds for Central Universities (WK2470000011).
文摘Telecom-band polarization-entangled photon- pair source has been widely used in quantum communi- cation due to its acceptable transmission loss. It is also used in cooperation with wavelength-division multiplexing (WDM) to construct entanglement distributor. However, previous schemes generally are not suitable for multinode scenario. In this paper, we construct a telecom-band po- larization-entangled photon-pair source, and it shows ul- trahigh fidelity and concurrence which are both greater than 90 % (raw data). Moreover, we set up a four-by-four entanglement distributor based on WDM. We check the 16 Clauser-Horne-Shimony-Holt inequalities, which show nonlocality. Lastly, as an example of practical application of this source, we estimate the quantum bit error rates and quantum secret key rates when it is used in quantum key distribution. Furthermore, the transmission of entanglement in long optical fibers is also demonstrated.
基金supported by the National Cryptography Development Foundation of China(Grant No.MMJJ201401011)the Science and Technology Program of Guangzhou,China(Grant Nos.2013J4500095 and 2014J4100050)
文摘We propose a novel quantum key distribution scheme by using the SAM-OAM hybrid entangled state as the physical resource.To obtain this state,the polarization entangled photon pairs are created by the spontaneous parametric down conversion process,and then,the q-plate acts as a SAM-to-OAM transverter to transform the polarization entangled pairs into the hybrid entangled pattern,which opens the possibility to exploit the features of the higher-dimensional space of OAM state to encode information.In the manipulation and encoding process,Alice performs the SAM measurement by modulating the polarization stateπ lθx on one photon,whereas Bob modulates the OAM sector state lx' on the other photon to encode his key elements using the designed holograms which is implemented by the computer-controlled SLM.With coincidence measurement,Alice could extract the key information.It is showed that N-based keys can be encoded with each pair of entangled photon,and this scheme is robust against Eve’s individual attack.Also,the MUBs are not used.Alice and Bob do not need the classical communication for the key recovery.
基金supported by the National Natural Science Funds of China(Grants Nos.11474107,11104085,and 11204086)the Guangdong Natural Science Funds for Distinguished Young Scholar(Grant No2014A030306012)+2 种基金the Foundation for outstanding young teacher in Higher Education of Guangdong(Grant No.Yq2013050)the Pearl River Nova Program of Guangzhou(Grant No.2014010)the upported by Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT1243)
文摘Quantum networks strongly depend on the efficient interactions between flying photonic quantum bits and local long-lived atomic matter nodes. To achieve the efficient quantum interfaces between polarization-encoding photons and spin-encoding atoms, polarization-entangled paired photons with a bandwidth narrower than the natural linewidth of the atoms are highly required. In this paper, we review the generation of subnatural-linewidth polarization-entangled paired photons through spontaneous four-wave mixing with cold atoms, which is very suitable for the application of quantum ne^orks.
基金the National Basic Research Program of China (2010CB923103)the National Natural Science Foundation of China (11475109, 11274211 and 60821004)
文摘We report an experimental generation of polarization-entangled photon pairs in a cold atomic ensemble. A single Stokes photon and one spin-wave excitation are simultaneously created via spontaneous Raman scattering. The spin-wave excitation is then converted into an anti-Stokes photon via an electromagnetic-induced-transparency reading process. The measured cross-correlation functions between the Stokes and anti-Stokes photons for two orthogonal polarizations are -75 and 74, respectively, at a generation rate of the photon pair of -60/s. Based on such correlations, we obtain polarization-entangled photon pairs, whose Bell parameter is S = 2.77 4- 0.01, violating Bell-CHSH inequality by -77 standard deviations. The presented polarization-entangled photon source has high entanglement degree and fast generation rate, which will promise us to apply it in future quantum repeater.