期刊文献+
共找到5,539篇文章
< 1 2 250 >
每页显示 20 50 100
基于自适应动态无偏最小二乘支持向量机的刀具磨损预测建模 被引量:17
1
作者 肖鹏飞 张超勇 +1 位作者 罗敏 林文文 《中国机械工程》 EI CAS CSCD 北大核心 2018年第7期842-849,共8页
由于训练样本数量有限,滑动时间窗长度以及监测模型不能自适应调整和更新等因素,传统基于机器学习的刀具磨损预测模型存在精度和效率较低等问题,因此提出了一种基于自适应动态无偏最小二乘支持向量机(ADNLSSVM)的刀具磨损预测模型。采... 由于训练样本数量有限,滑动时间窗长度以及监测模型不能自适应调整和更新等因素,传统基于机器学习的刀具磨损预测模型存在精度和效率较低等问题,因此提出了一种基于自适应动态无偏最小二乘支持向量机(ADNLSSVM)的刀具磨损预测模型。采用公开数据库中的铣削加工数据集,通过时频域分析和小波包分解等手段从振动信号中提取特征量,并进一步利用相关性分析从中选择有效特征量作为模型输入。试验结果表明该方法所建模型具有较高的建模效率和预测精度。 展开更多
关键词 自适应动态无偏最小二乘支持向量机 滑动时间窗自适应调整 特征提取和选择 刀具磨损
下载PDF
模糊偏最小二乘支持向量机的应用研究 被引量:11
2
作者 宋海鹰 桂卫华 阳春华 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第5期1344-1347,1352,共5页
基于偏最小二乘回归法和模糊隶属度函数,提出了一种模糊偏最小二乘支持向量机。传统最小二乘支持向量机引入模糊加权系数后,可以根据训练样本点的情况调整折衷系数,有效地提高了最小二乘支持向量机的抗噪性能。同时利用偏最小二乘回归法... 基于偏最小二乘回归法和模糊隶属度函数,提出了一种模糊偏最小二乘支持向量机。传统最小二乘支持向量机引入模糊加权系数后,可以根据训练样本点的情况调整折衷系数,有效地提高了最小二乘支持向量机的抗噪性能。同时利用偏最小二乘回归法,克服了求解线性回归方程中自变量向量间的多重相关性问题。利用sinc函数对该建模方法进行了测试,并进一步对铜转炉吹炼时间的预测问题进行了仿真研究。仿真结果表明,该建模方法具有预测准确、跟踪性能好的优点。 展开更多
关键词 模糊支持向量 最小乘支持向量 最小二乘回归 智能建模
下载PDF
基于偏最小二乘支持向量机回归区域物流量预测 被引量:9
3
作者 庞明宝 谢玲 +1 位作者 郝然 马宁 《河北工业大学学报》 CAS 2008年第2期91-96,共6页
研究采用偏最小二乘支持向量机回归模型进行区域物流量预测问题.针对普通最小二乘预测所存在的问题和物流系统样本量少的具体状况,提出偏最小二乘支持向量机回归区域物流量预测方法,采用主成分分析法提取影响物流量因素的新综合变量,建... 研究采用偏最小二乘支持向量机回归模型进行区域物流量预测问题.针对普通最小二乘预测所存在的问题和物流系统样本量少的具体状况,提出偏最小二乘支持向量机回归区域物流量预测方法,采用主成分分析法提取影响物流量因素的新综合变量,建立以新综合变量为输入,物流量为输出的支持向量机回归非线性预测模型,在廊坊市物流量预测中进行仿真试验,证明了该方法的可行性与正确性. 展开更多
关键词 最小二乘回归 支持向量 物流 预测 主成分分析
下载PDF
基于偏最小二乘支持向量机的短期电力负荷预测方法研究 被引量:19
4
作者 吉训生 《电力系统保护与控制》 EI CSCD 北大核心 2010年第23期55-59,共5页
偏最小二乘(PLS)运算降低电力负荷数据之间的相关性,最小二乘支持向量机(LS-SVM)可以获得模型的全局最优预测效果,减少预测过程的运算量。介绍了PLS和LS-SVM的基本原理,给出了PLS-LS-SVM建立短期日电力负荷预测模型的过程,并用于某地区2... 偏最小二乘(PLS)运算降低电力负荷数据之间的相关性,最小二乘支持向量机(LS-SVM)可以获得模型的全局最优预测效果,减少预测过程的运算量。介绍了PLS和LS-SVM的基本原理,给出了PLS-LS-SVM建立短期日电力负荷预测模型的过程,并用于某地区2008年的用电日负荷预测,预测的平均相对误差和最大相对误差分别为0.685%和8.8599%。与基于AR(1)模型的预测结果相比,PLS-LS-SVM模型更高的预测准确性可为短期电力负荷预测提供有效依据。 展开更多
关键词 最小二乘 最小乘支持向量 电力负荷预测 AR(1)模型 预测误差
下载PDF
天然气消费量的偏最小二乘支持向量机预测 被引量:2
5
作者 谭水莲 钟忠社 +2 位作者 马村 尹勋刚 胡军浩 《数学建模及其应用》 2014年第1期35-40,共6页
结合偏最小二乘法和支持向量机的优缺点,提出基于偏最小二乘支持向量机的天然气消费量预测模型。首先,利用偏最小二乘法确定影响天然气消费量的新综合变量,建立以新综合变量为输入,天然气消费量为输出的支持向量机模型,对天然气消费量... 结合偏最小二乘法和支持向量机的优缺点,提出基于偏最小二乘支持向量机的天然气消费量预测模型。首先,利用偏最小二乘法确定影响天然气消费量的新综合变量,建立以新综合变量为输入,天然气消费量为输出的支持向量机模型,对天然气消费量进行了预测;然后,与多元回归、偏最小二乘回归、普通支持向量机做误差检验比较,验证该方法的可行性与正确性。结果表明,此天然气消费量预测模型具有较高的精确度和应用价值。 展开更多
关键词 偏最小二乘支持向量机 天然气消费 预测 误差比较
下载PDF
基于遗传优化偏最小二乘支持向量机的税收预测研究 被引量:1
6
作者 侯利强 杨善林 陈志强 《科技管理研究》 CSSCI 北大核心 2014年第11期197-200,共4页
由于我国税收收入存在高度的非线性、耦合性和多因素的影响,故而对其进行预测是传统的预测方法难以胜任的。首先,提出偏最小二乘支持向量回归对我国税收收入进行预测的思路。其次,由于参数集(C,σ2)直接影响支持向量技术的预测优劣,故... 由于我国税收收入存在高度的非线性、耦合性和多因素的影响,故而对其进行预测是传统的预测方法难以胜任的。首先,提出偏最小二乘支持向量回归对我国税收收入进行预测的思路。其次,由于参数集(C,σ2)直接影响支持向量技术的预测优劣,故采用改进的遗传算法对参数集进行全局寻优,这样既保证了处理非线性的优势,又确保了支持向量回归模型的稳定性与精确性。结果表明,预测精度有着显著提高,说明了该模型的有效性与实用性。 展开更多
关键词 税收预测 最小乘支持向量回归 遗传算法 参数集
下载PDF
基于偏最小二乘支持向量机的烟气湿法脱硫效率预测模型 被引量:15
7
作者 崔仕文 铁治欣 +1 位作者 丁成富 赵峰 《热力发电》 CAS 北大核心 2017年第4期81-87,共7页
为了能够更好地反映电厂湿法脱硫中的过程参数与脱硫效率之间的关系,本文利用偏最小二乘回归法(PLS)对影响烟气湿法脱硫效率的过程因素进行分析,提取出对湿法脱硫效率影响较大的因素作为主成分,将提取的主成分采用支持向量机(SVM)进行预... 为了能够更好地反映电厂湿法脱硫中的过程参数与脱硫效率之间的关系,本文利用偏最小二乘回归法(PLS)对影响烟气湿法脱硫效率的过程因素进行分析,提取出对湿法脱硫效率影响较大的因素作为主成分,将提取的主成分采用支持向量机(SVM)进行预测,降低了SVM的输入维数,建立了基于偏最小二乘支持向量机(PLS-SVM)的烟气湿法脱硫效率预测模型,并选取某机组石灰石-石膏湿法脱硫设施运行监控数据进行模型的训练和预测。预测分析结果显示,PLS-SVM的预测数据最大绝对误差小于0.65%,平均绝对误差在0.3%左右,说明该模型的预测效果较好,与SVM预测模型相比,提高了预测效率和精度。 展开更多
关键词 最小二乘回归 支持向量 湿法脱硫 脱硫效率 预测模型
下载PDF
基于偏最小二乘支持向量机的燃煤电站锅炉效率模型 被引量:6
8
作者 章云锋 王景成 史元浩 《化工自动化及仪表》 CAS 2012年第11期1432-1436,共5页
针对电站锅炉燃烧系统非线性强、变量间强耦舍及信号噪声大等特点,提出了基于电站历史运行数据的锅炉效率建模方法。根据锅炉燃烧的机理选取关键输入变量,利用偏最小二乘原理(PLS)对其进行特征提取,建立锅炉效率与所提取特征之间的最小... 针对电站锅炉燃烧系统非线性强、变量间强耦舍及信号噪声大等特点,提出了基于电站历史运行数据的锅炉效率建模方法。根据锅炉燃烧的机理选取关键输入变量,利用偏最小二乘原理(PLS)对其进行特征提取,建立锅炉效率与所提取特征之间的最小二乘支持向量机(LSSVM)关系模型,组成一个PLS-LSSVM混合模型,并利用电站实际数据对模型的准确性进行验证。结果表明:PLS-LSSVM模型相比于PLS模型具有更强的泛化能力,相比于LSSVM模型有更好的运行效率。 展开更多
关键词 支持向量 最小二乘 锅炉效率
下载PDF
基于偏最小二乘支持向量机的图书馆效益评价研究 被引量:1
9
作者 赵璐 匡建超 +2 位作者 罗鑫 王众 金婷 《科技管理研究》 北大核心 2010年第2期227-229,共3页
图书馆的效益评价是图书馆工作科学化、计量化的基础和保证。为解决评价样本少、评价指标相关性高等问题,提出了一种基于偏最小二乘—支持向量机(PLS-SVM)的图书馆效益评价模型。该模型有机结合了偏最小二乘和支持向量机的优点,不仅具... 图书馆的效益评价是图书馆工作科学化、计量化的基础和保证。为解决评价样本少、评价指标相关性高等问题,提出了一种基于偏最小二乘—支持向量机(PLS-SVM)的图书馆效益评价模型。该模型有机结合了偏最小二乘和支持向量机的优点,不仅具有较强的全局优化能力和泛化能力,还能有效克服变量间的线性关系,消除指标间的相关性,提高了评价结果的准确性。通过对14个高校样本的实例应用,结果表明PLS-SVM模型能有效评价图书馆效益,评价结果符合客观实际。 展开更多
关键词 最小二乘 支持向量 PLS-SVM模型 图书馆 效益评价
下载PDF
基于偏最小二乘支持向量机模型的个人信用评估研究 被引量:1
10
作者 梁小林 柳映堂 +1 位作者 梁曌 欧阳冰玉 《湖南文理学院学报(自然科学版)》 CAS 2021年第4期6-10,共5页
为了准确评价客户潜在信用风险,提出了偏最小二乘支持向量机组合评价模型。首先使用偏最小二乘能降低变量间的相关性,支持向量机可用于建立评估模型,然后采用相对误差频率分布作为新的指标评价模型,最后,与常见的评分模型在信用卡数据... 为了准确评价客户潜在信用风险,提出了偏最小二乘支持向量机组合评价模型。首先使用偏最小二乘能降低变量间的相关性,支持向量机可用于建立评估模型,然后采用相对误差频率分布作为新的指标评价模型,最后,与常见的评分模型在信用卡数据集上进行了对比。结果表明, PLS-SVM评价模型在有效性、稳定性以及准确性方面均有更好的表现。 展开更多
关键词 支持向量模型 最小二乘 信用评估 相对误差频率
下载PDF
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:4
11
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫群优化算法 最小乘支持向量 软测量模型
下载PDF
基于最小二乘孪生支持向量机的不确定数据学习算法 被引量:1
12
作者 刘锦能 肖燕珊 刘波 《广东工业大学学报》 CAS 2024年第1期79-85,共7页
孪生支持向量机通过计算2个二次规划问题,得到2个不平行的超平面,用于解决二分类问题。然而在实际的应用中,数据通常包含不确定信息,这将会对构建模型带来困难。对此,提出了一种用于求解带有不确定数据的最小二乘孪生支持向量机模型。首... 孪生支持向量机通过计算2个二次规划问题,得到2个不平行的超平面,用于解决二分类问题。然而在实际的应用中,数据通常包含不确定信息,这将会对构建模型带来困难。对此,提出了一种用于求解带有不确定数据的最小二乘孪生支持向量机模型。首先,对于每个实例,该方法都分配一个噪声向量来构建噪声信息。其次,将噪声向量结合到最小二乘孪生支持向量机,并在训练阶段得到优化。最后,采用一个2步循环迭代的启发式框架求解得到分类器和更新噪声向量。实验表明,跟其他对比方法比较,本方法采用噪声向量对不确定信息进行建模,并将孪生支持向量机的二次规划问题转化为线性方程,具有更好的分类精度和更高的训练效率。 展开更多
关键词 最小二乘 孪生支持向量 不平行平面学习 数据不确定性 分类
下载PDF
基于改进最小二乘支持向量机组合模型的深基坑沉降变形预测 被引量:1
13
作者 刘清龙 吕颖慧 +1 位作者 秦磊 赵鹏 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第1期8-14,共7页
为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量... 为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量机进行参数寻优,对分解的数据分别训练、预测后再叠加,得到最终预测结果;应用所提出模型对济南市某深基坑的累积沉降量进行预测,同时与其他模型对比,验证所提出模型的实用性和优越性。结果表明:所提出模型预测深基坑累积沉降量的平均相对误差为0.035%,均方误差为0.0809 mm^(2),均方根误差为0.2838 mm,所提出模型的准确性远优于其他模型的;自适应噪声完备集合经验模态分解方法的引入更有利于在深基坑沉降变形预测方面发挥最小二乘支持向量机的优势。 展开更多
关键词 深基坑沉降变形 最小乘支持向量 经验模态分解 粒子群优化算法 遗传算法
下载PDF
粒子群最小二乘支持向量机结合偏最小二乘法用于芝麻油质量的鉴别 被引量:17
14
作者 毕艳兰 任小娜 +3 位作者 彭丹 杨国龙 张林尚 汪学德 《分析化学》 SCIE EI CAS CSCD 北大核心 2013年第9期1366-1372,共7页
结合粒子群最小二乘支持向量机(PSO-LSSVM)与偏最小二乘法(PLS)提出一种基于气相色谱技术的新方法,对芝麻油进行真伪鉴别,并对掺伪品中掺假比例进行定量分析。采用主成分分析法(PCA)对857个样本的脂肪酸色谱数据进行分析,优选主成分作... 结合粒子群最小二乘支持向量机(PSO-LSSVM)与偏最小二乘法(PLS)提出一种基于气相色谱技术的新方法,对芝麻油进行真伪鉴别,并对掺伪品中掺假比例进行定量分析。采用主成分分析法(PCA)对857个样本的脂肪酸色谱数据进行分析,优选主成分作为最小二乘支持向量机(LSSVM)的输入向量。利用粒子群算法(PSO)优化LSSVM,构建芝麻油掺伪鉴别的两级分类模型,同时运用PLS建立掺伪芝麻油中掺伪油脂的定量校正模型,两级分类模型的准确率分别达到了100%和98.7%,定量分析模型的平均预测标准偏差(RMSEP)为3.91%。结果表明,本方法的鉴别准确性和模型泛化能力均优于经典的BP神经网络和支持向量机(SVM),可用于食用油脂加工和流通环节的质量控制,为食用油质量的准确鉴定提供了一条有效途径。 展开更多
关键词 芝麻油 最小乘支持向量 粒子群优化算法 最小二乘 掺伪
下载PDF
基于偏最小二乘回归和最小二乘支持向量机的大坝渗流监控模型 被引量:24
15
作者 李波 顾冲时 +1 位作者 李智录 张真真 《水利学报》 EI CSCD 北大核心 2008年第12期1390-1394,1400,共6页
利用偏最小二乘回归法对影响大坝渗流的诸多因素进行分析,提取对因变量影响强的成分,克服了变量间的多重相关性问题,降低了最小二乘支持向量机的输入维数,从而可以较好的解决非线性问题,建立了基于PLS-LSSVM的大坝渗流监控模型。实例分... 利用偏最小二乘回归法对影响大坝渗流的诸多因素进行分析,提取对因变量影响强的成分,克服了变量间的多重相关性问题,降低了最小二乘支持向量机的输入维数,从而可以较好的解决非线性问题,建立了基于PLS-LSSVM的大坝渗流监控模型。实例分析表明,PLS-LSSVM模型的拟合与预测精度均优于独立使用PLS或LSSVM建模的精度;PLS-LSSVM模型的学习训练效率比LSSVM模型有较大的优势,更适合于大规模的数据建模。 展开更多
关键词 大坝渗流 最小二乘回归 最小乘支持向量 监控模型
下载PDF
构建支持向量机-偏最小二乘法为药物构效关系建模 被引量:13
16
作者 李剑 陈德钊 +1 位作者 成忠 叶子青 《分析化学》 SCIE EI CAS CSCD 北大核心 2006年第2期263-266,共4页
为研究药物构效关系积累样本数据的过程中,需为小样本建模。此时较易造成过拟合,影响模型的预测性能和稳定性。为此可用偏最小二乘(PLS)法从样本数据中成对地提取最优成分,消除自变量间的复共线性,并有效的降维,然后应用最小二乘支持向... 为研究药物构效关系积累样本数据的过程中,需为小样本建模。此时较易造成过拟合,影响模型的预测性能和稳定性。为此可用偏最小二乘(PLS)法从样本数据中成对地提取最优成分,消除自变量间的复共线性,并有效的降维,然后应用最小二乘支持向量机对成对成分进行非线性回归,并以基于误差修正的策略调整,使之更有效地表达自、因变量间的非线性关系。由此构建为EB-LSSVM-PLS算法,所建模型的预报精度高,稳定性良好。将其应用于新型黄烷酮类衍生物的QSAR建模,效果令人满意,其泛化性能优于其它方法。 展开更多
关键词 最小乘支持向量 最小二乘 基于误差修正 小样本 构效关系 泛化性能
下载PDF
基于聚类分析与偏最小二乘法的支持向量机PM_(2.5)预测 被引量:7
17
作者 喻其炳 李勇 +3 位作者 白云 姚行艳 成志伟 李川 《环境科学与技术》 CAS CSCD 北大核心 2017年第6期157-164,共8页
考虑样本和输入变量的选取对预测模型精度的影响,文章提出一种基于K-means聚类与偏最小二乘法的支持向量机PM_(2.5)浓度预测方法。首先采用K-means算法对气象属性进行聚类,间接把PM_(2.5)序列分成了相似度较高的若干类,并分别作为预测... 考虑样本和输入变量的选取对预测模型精度的影响,文章提出一种基于K-means聚类与偏最小二乘法的支持向量机PM_(2.5)浓度预测方法。首先采用K-means算法对气象属性进行聚类,间接把PM_(2.5)序列分成了相似度较高的若干类,并分别作为预测建模用的训练样本;然后采用偏最小二乘法从影响PM_(2.5)浓度的多种因素中提取主成分,作为各类模型的优化输入;最后根据预测日的气象属性选出合适类别,运用优化后的训练样本和输入变量建立PM_(2.5)浓度预测模型。以北京市某监测点的实际数据为例,运用改进模型和传统模型分别进行实验。结果表明:改进的支持向量机相比传统支持向量机在预测精度上有明显的提高,精度评价指标MAE、MAPE和RMSE分别下降38.10%、50.59%、37.15%。研究实证,引入K-means聚类与偏最小二乘法的手段来提高传统支持向量机在PM_(2.5)浓度预测中的精度具有可行性。 展开更多
关键词 K-MEANS聚类 最小二乘 支持向量 PM2.5浓度预测
下载PDF
结合偏最小二乘法和支持向量机的遥感影像变化检测 被引量:9
18
作者 黄杰 王光辉 +3 位作者 杨化超 胡高强 李建磊 柴文慧 《测绘通报》 CSCD 北大核心 2016年第7期35-38,共4页
针对多光谱遥感影像通道之间相关性影响难以消除及变化检测的阈值难以确定的问题,提出了一种结合偏最小二乘法(PLS)和支持向量机(SVM)的遥感影像变化检测方法。将两个时相的多通道遥感影像视为两组多元随机变量,引入多元统计数据分析方... 针对多光谱遥感影像通道之间相关性影响难以消除及变化检测的阈值难以确定的问题,提出了一种结合偏最小二乘法(PLS)和支持向量机(SVM)的遥感影像变化检测方法。将两个时相的多通道遥感影像视为两组多元随机变量,引入多元统计数据分析方法中的PLS理论,进行成分提取并构造差异影像;再通过SVM将差异影像分为变化与不变化两类别;最后利用形态学算子对分类结果作处理。选取Landsat8多光谱遥感影像进行试验,结果表明该方法可以很好地实现多光谱影像的变化检测,对地理国情数据监测具有重要意义。 展开更多
关键词 多光谱影像 最小二乘 支持向量 变化检测 多重相关性
下载PDF
具有间隔分布优化的最小二乘支持向量机
19
作者 刘玲 巩荣芬 +1 位作者 储茂祥 刘历铭 《微电子学与计算机》 2024年第8期1-9,共9页
最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LS... 最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LSSVM模型的泛化性能,提高其分类能力,提出一种具有间隔分布优化的最小二乘支持向量机(LSSVM with margin distribution optimization,MLSSVM)。首先,重新定义间隔均值和间隔方差,深入挖掘数据的间隔分布信息,增强模型的泛化性能;其次,引入权重线性损失,进一步优化了间隔均值,提升模型的分类精度;然后,分析目标函数,剔除冗余项,进一步优化间隔方差;最后,保留LSSVM的求解机制,保障模型的计算效率。实验表明,新提出的分类模型具有良好的泛化性能和运行时间。 展开更多
关键词 最小乘支持向量 大间隔分布 间隔分布优化 权重线性损失
下载PDF
基于偏最小二乘回归与支持向量机耦合的咸潮预报模型 被引量:25
20
作者 刘德地 陈晓宏 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期89-92,共4页
利用偏最小二乘回归对影响咸潮的因素进行分析,提取出对因变量影响强的成分,从而克服了变量之间的多重相关性问题;同时利用支持向量机在解决小样本非线性问题上的优势,采用将偏最小二乘回归与支持向量机耦合的方法,建立了咸潮预报模型(P... 利用偏最小二乘回归对影响咸潮的因素进行分析,提取出对因变量影响强的成分,从而克服了变量之间的多重相关性问题;同时利用支持向量机在解决小样本非线性问题上的优势,采用将偏最小二乘回归与支持向量机耦合的方法,建立了咸潮预报模型(PLS-SVM),并应用该模型对珠海市平岗站盐度的变化进行了模拟和预测,研究结果表明,所提出的PLS-SVM模型模拟和预测精度明显优于常用的BP人工神经网络、多元回归模型,可更好地应用于咸潮预报。 展开更多
关键词 最小二乘回归(PLS) 支持向量(SVM) 咸潮预报 珠海市
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部