期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
偏Hugoniot状态下93钨状态方程
1
作者 黄海军 聂新卫 +5 位作者 冷春蔚 冯磊 胡晓军 罗国强 沈强 王传彬 《高压物理学报》 CSCD 北大核心 2017年第5期541-547,共7页
利用动高压实验装置二级气体炮和5层阻抗梯度飞片,在2.12和5.02km/s的碰撞速度下测量了93钨样品的自由面速度,同时基于冲击波理论对实验测量的自由面速度进行了解读。高温高压下93钨的偏Hugoniot状态方程分析表明,在较低的碰撞速度下多... 利用动高压实验装置二级气体炮和5层阻抗梯度飞片,在2.12和5.02km/s的碰撞速度下测量了93钨样品的自由面速度,同时基于冲击波理论对实验测量的自由面速度进行了解读。高温高压下93钨的偏Hugoniot状态方程分析表明,在较低的碰撞速度下多次压缩后93钨的压强和温度要高于单次Hugoniot压缩的压强和温度,而在较高的碰撞速度下截然相反,其主要原因是93钨在多次加载过程中Hugoniot参数和相对压缩性发生了变化。 展开更多
关键词 Hugoniot状态方程 多层阻抗梯度飞片 93钨 高温高压
下载PDF
计算机化物性系统的实现
2
作者 黄河 李政 倪维斗 《动力工程》 CSCD 北大核心 2005年第1期147-152,共6页
物性计算系统是各种动力 化工流程仿真平台不可缺少的基础支撑,其正确性、普适性和鲁棒性将直接影响平台表现。本文旨在讨论如何建立一个可以处理任意相态、任意种类纯物质混合物、高效而稳定的物性计算系统,快速计算混合物的各种热力... 物性计算系统是各种动力 化工流程仿真平台不可缺少的基础支撑,其正确性、普适性和鲁棒性将直接影响平台表现。本文旨在讨论如何建立一个可以处理任意相态、任意种类纯物质混合物、高效而稳定的物性计算系统,快速计算混合物的各种热力学函数值。实现过程独立于特定平台及特定系统。 展开更多
关键词 计算机应用 物性系统 偏状态方程 仿真 三次型方程 混合规则 BWRS
下载PDF
Nash and Stackelberg Differential Games 被引量:1
3
作者 Alain BENSOUSSAN Jens FREHSE Jens VOGELGESANG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2012年第3期317-332,共16页
A large class of stochastic differential games for several players is considered in this paper.The class includes Nash differential games as well as Stackelberg differential games.A mix is possible.The existence of fe... A large class of stochastic differential games for several players is considered in this paper.The class includes Nash differential games as well as Stackelberg differential games.A mix is possible.The existence of feedback strategies under general conditions is proved.The limitations concern the functionals in which the state and the controls appear separately.This is also true for the state equations.The controls appear in a quadratic form for the payoff and linearly in the state equation.The most serious restriction is the dimension of the state equation,which cannot exceed 2.The reason comes from PDE(partial differential equations) techniques used in studying the system of Bellman equations obtained by Dynamic Programming arguments.In the authors' previous work in 2002,there is not such a restriction,but there are serious restrictions on the structure of the Hamiltonians,which are violated in the applications dealt with in this article. 展开更多
关键词 Stochastic games Bellman equation Nonlinear elliptic and parabolicequations Stochastic differential games HAMILTONIANS
原文传递
On a reaction-diffusion model for sterile insect release method on a bounded domain
4
作者 Weihua Jiang Xin Li XingfuZou 《International Journal of Biomathematics》 2014年第3期119-135,共17页
We consider a system of partial differential equations that describes the interaction of the sterile and fertile species undergoing the sterile insect release method (SIRM). Unlike in the previous work [M. A. Lewis ... We consider a system of partial differential equations that describes the interaction of the sterile and fertile species undergoing the sterile insect release method (SIRM). Unlike in the previous work [M. A. Lewis and P. van den Driessche, Waves of extinction from sterile insect release, Math. Biosci. 5 (1992) 221 247] where the habitat is assumed to be the one-dimensional whole space ~, we consider this system in a bounded one- dimensional domain (interval). Our goal is to derive sufficient conditions for success of the SIRM. We show the existence of the fertile-free steady state and prove its stability. Using the releasing rate as the parameter, and by a saddle-node bifurcation analysis, we obtain conditions for existence of two co-persistence steady states, one stable and the other unstable. Biological implications of our mathematical results are that: (i) when the fertile population is at low level, the SIRM, even with small releasing rate, can successfully eradicate the fertile insects; (ii) when the fertile population is at a higher level, the SIRM can succeed as long as the strength of the sterile releasing is large enough, while the method may also fail if the releasing is not sufficient. 展开更多
关键词 Sterile insect release method diffusion saddle-node bifurcation upper lowersolution method.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部