Knowledge of the locations of seismic sources is critical for microseismic monitoring. Time-window-based elastic wave interferometric imaging and weighted- elastic-wave (WEW) interferometric imaging are proposed and...Knowledge of the locations of seismic sources is critical for microseismic monitoring. Time-window-based elastic wave interferometric imaging and weighted- elastic-wave (WEW) interferometric imaging are proposed and used to locate modeled microseismic sources. The proposed method improves the precision and eliminates artifacts in location profiles. Numerical experiments based on a horizontally layered isotropic medium have shown that the method offers the following advantages: It can deal with Iow-SNR microseismic data with velocity perturbations as well as relatively sparse receivers and still maintain relatively high precision despite the errors in the velocity model. Furthermore, it is more efficient than conventional traveltime inversion methods because interferometric imaging does not require traveltime picking. Numerical results using a 2D fault model have also suggested that the weighted-elastic-wave interferometric imaging can locate multiple sources with higher location precision than the time-reverse imaging method.展开更多
With the development of seismic exploration,passive-source seismic data has attracted increasing attention.Ambient noise passive seismic sources exists widely in nature and industrial production.Passive seismic data i...With the development of seismic exploration,passive-source seismic data has attracted increasing attention.Ambient noise passive seismic sources exists widely in nature and industrial production.Passive seismic data is important in logging while drilling(LWD),large-scale structural exploration,etc.In this paper,we proposed a passive multiple reverse time migration imaging(PMRTMI)method based on wavefield decomposition and normalized imaging conditions method.This method differs from seismic interferometry in that it can use raw passive seismic data directly in RTM imaging without reconstruction of virtual active gather,and we use the wavefield decomposition method to eliminate the low frequency noise in RTM.Further,the energy normalized imaging condition is used in full wavefield decomposition,which can not only enhance the image quality of both edge and deep information but also overcome the wrong energy problem caused by uneven distribution of passive sources;furthermore,this method exhibits high efficiency.Finally,numerical examples with the Marmousi model show the effectiveness of the method.展开更多
基金supported by the R&D of Key Instruments and Technologies for Deep Resources Prospecting(No.ZDYZ2012-1)National Natural Science Foundation of China(No.11374322)
文摘Knowledge of the locations of seismic sources is critical for microseismic monitoring. Time-window-based elastic wave interferometric imaging and weighted- elastic-wave (WEW) interferometric imaging are proposed and used to locate modeled microseismic sources. The proposed method improves the precision and eliminates artifacts in location profiles. Numerical experiments based on a horizontally layered isotropic medium have shown that the method offers the following advantages: It can deal with Iow-SNR microseismic data with velocity perturbations as well as relatively sparse receivers and still maintain relatively high precision despite the errors in the velocity model. Furthermore, it is more efficient than conventional traveltime inversion methods because interferometric imaging does not require traveltime picking. Numerical results using a 2D fault model have also suggested that the weighted-elastic-wave interferometric imaging can locate multiple sources with higher location precision than the time-reverse imaging method.
基金sponsored by the Natural Science Foundation of China(No.41874139)the Natural Science Foundation of China(No.41674124)Jilin Province Foundation for Excellent Youths(No.20190103139JH)
文摘With the development of seismic exploration,passive-source seismic data has attracted increasing attention.Ambient noise passive seismic sources exists widely in nature and industrial production.Passive seismic data is important in logging while drilling(LWD),large-scale structural exploration,etc.In this paper,we proposed a passive multiple reverse time migration imaging(PMRTMI)method based on wavefield decomposition and normalized imaging conditions method.This method differs from seismic interferometry in that it can use raw passive seismic data directly in RTM imaging without reconstruction of virtual active gather,and we use the wavefield decomposition method to eliminate the low frequency noise in RTM.Further,the energy normalized imaging condition is used in full wavefield decomposition,which can not only enhance the image quality of both edge and deep information but also overcome the wrong energy problem caused by uneven distribution of passive sources;furthermore,this method exhibits high efficiency.Finally,numerical examples with the Marmousi model show the effectiveness of the method.