为使用正例与未标注数据训练分类器(positive and unlabeled learning,PU learning),提出基于随机森林的PU学习算法。对POSC4.5算法进行扩展,在其生成决策树的过程中加入随机特征选择;在训练阶段,使用有放回抽样技术对PU数据集抽样,生...为使用正例与未标注数据训练分类器(positive and unlabeled learning,PU learning),提出基于随机森林的PU学习算法。对POSC4.5算法进行扩展,在其生成决策树的过程中加入随机特征选择;在训练阶段,使用有放回抽样技术对PU数据集抽样,生成多个不同的PU训练集,并以其训练扩展后的POSC4.5算法,构造多棵决策树;在分类阶段,采用多数投票策略集成各决策树输出。在UCI数据集上的实验结果表明,该算法的分类性能优于偏置支持向量机算法、POS4.5算法和基于装袋技术的POSC4.5算法。展开更多
文摘为使用正例与未标注数据训练分类器(positive and unlabeled learning,PU learning),提出基于随机森林的PU学习算法。对POSC4.5算法进行扩展,在其生成决策树的过程中加入随机特征选择;在训练阶段,使用有放回抽样技术对PU数据集抽样,生成多个不同的PU训练集,并以其训练扩展后的POSC4.5算法,构造多棵决策树;在分类阶段,采用多数投票策略集成各决策树输出。在UCI数据集上的实验结果表明,该算法的分类性能优于偏置支持向量机算法、POS4.5算法和基于装袋技术的POSC4.5算法。