RRT(Rapidly exploring Random Tree)是一种基于采样的路径规划算法,非常适用于机器人的路径规划中,但是传统RRT^(*)算法存在耗时长、占用内存较大等缺点。所以针对这些问题提出一种改进RRT^(*)算法,该算法优化了父节点选取范围,在传统...RRT(Rapidly exploring Random Tree)是一种基于采样的路径规划算法,非常适用于机器人的路径规划中,但是传统RRT^(*)算法存在耗时长、占用内存较大等缺点。所以针对这些问题提出一种改进RRT^(*)算法,该算法优化了父节点选取范围,在传统随机采样机制的基础上引入了目标偏置采样和启发式策略,减少了算法耗时且缩短了路径长度;引入了节点拒绝策略,消除转弯角太大的冗余路径的同时也进一步提升了算法效率。利用MATLAB进行了仿真实验验证,结果表明改进RRT^(*)算法能在更短的时间内搜索到一条从起点到终点的最短无碰路径,并且可以很好地应用于机械臂的路径规划中。展开更多
In order to solve the problem of path planning of mobile robots in a dynamic environment,an improved rapidly-exploring random tree^(*)(RRT^(*))algorithm is proposed in this paper.First,the target bias sampling is intr...In order to solve the problem of path planning of mobile robots in a dynamic environment,an improved rapidly-exploring random tree^(*)(RRT^(*))algorithm is proposed in this paper.First,the target bias sampling is introduced to reduce the randomness of the RRT^(*)algorithm,and then the initial path planning is carried out in a static environment.Secondly,apply the path in a dynamic environment,and use the initially planned path as the path cache.When a new obstacle appears in the path,the invalid path is clipped and the path is replanned.At this time,there is a certain probability to select the point in the path cache as the new node,so that the new path maintains the trend of the original path to a greater extent.Finally,MATLAB is used to carry out simulation experiments for the initial planning and replanning algorithms,respectively.More specifically,compared with the original RRT^(*)algorithm,the simulation results show that the number of nodes used by the new improved algorithm is reduced by 43.19%on average.展开更多
文摘RRT(Rapidly exploring Random Tree)是一种基于采样的路径规划算法,非常适用于机器人的路径规划中,但是传统RRT^(*)算法存在耗时长、占用内存较大等缺点。所以针对这些问题提出一种改进RRT^(*)算法,该算法优化了父节点选取范围,在传统随机采样机制的基础上引入了目标偏置采样和启发式策略,减少了算法耗时且缩短了路径长度;引入了节点拒绝策略,消除转弯角太大的冗余路径的同时也进一步提升了算法效率。利用MATLAB进行了仿真实验验证,结果表明改进RRT^(*)算法能在更短的时间内搜索到一条从起点到终点的最短无碰路径,并且可以很好地应用于机械臂的路径规划中。
基金National Natural Science Foundation of China(No.61903291)。
文摘In order to solve the problem of path planning of mobile robots in a dynamic environment,an improved rapidly-exploring random tree^(*)(RRT^(*))algorithm is proposed in this paper.First,the target bias sampling is introduced to reduce the randomness of the RRT^(*)algorithm,and then the initial path planning is carried out in a static environment.Secondly,apply the path in a dynamic environment,and use the initially planned path as the path cache.When a new obstacle appears in the path,the invalid path is clipped and the path is replanned.At this time,there is a certain probability to select the point in the path cache as the new node,so that the new path maintains the trend of the original path to a greater extent.Finally,MATLAB is used to carry out simulation experiments for the initial planning and replanning algorithms,respectively.More specifically,compared with the original RRT^(*)algorithm,the simulation results show that the number of nodes used by the new improved algorithm is reduced by 43.19%on average.