The amino acid composition and the biased auto-correlation function are considered as features, BP neural network algorithm is used to synthesize these features. The prediction accuracy of this method is verified by u...The amino acid composition and the biased auto-correlation function are considered as features, BP neural network algorithm is used to synthesize these features. The prediction accuracy of this method is verified by using the independent non-homologous protein database. It is shown that the average absolute errors for resubstitution test are 0.070 and 0.068 with the standard deviations 0.049 and 0.047 for the prediction of the content of α-helix and β-sheet respectively. For cross-validation test, the average absolute errors are 0.075 and 0.070 with the standard deviations 0.050 and 0.049 for the prediction of the content of α-helix and β-sheet respectively. Compared with the other methods currently available, the BP neural network method combined with the amino acid composition and the biased auto-correlation function features can effectively improve the prediction accuracy.展开更多
文摘The amino acid composition and the biased auto-correlation function are considered as features, BP neural network algorithm is used to synthesize these features. The prediction accuracy of this method is verified by using the independent non-homologous protein database. It is shown that the average absolute errors for resubstitution test are 0.070 and 0.068 with the standard deviations 0.049 and 0.047 for the prediction of the content of α-helix and β-sheet respectively. For cross-validation test, the average absolute errors are 0.075 and 0.070 with the standard deviations 0.050 and 0.049 for the prediction of the content of α-helix and β-sheet respectively. Compared with the other methods currently available, the BP neural network method combined with the amino acid composition and the biased auto-correlation function features can effectively improve the prediction accuracy.