期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
神经网络在震相识别中的应用 被引量:15
1
作者 王娟 刘俊民 范万春 《现代电子技术》 2004年第8期35-37,共3页
设计了三阶段的三层 BP神经网络对地震震相进行分类识别 ,系统将地震震相分为 4类 :远震 T、区域性 S、区域性 P、噪声 N;网络训练测试利用了 STKA台站的 2 0 0组数据 ,样本集和测试集各占 10 0组 (其中 3 0个远震 T波、 2 0区域性 P波... 设计了三阶段的三层 BP神经网络对地震震相进行分类识别 ,系统将地震震相分为 4类 :远震 T、区域性 S、区域性 P、噪声 N;网络训练测试利用了 STKA台站的 2 0 0组数据 ,样本集和测试集各占 10 0组 (其中 3 0个远震 T波、 2 0区域性 P波、 2 0区域性 S波、 3 0噪声 N ) ,三阶段的平均识别效率分别为 91% ,93 .8% ,98% ,实验证明 ,用神经网络对地震震相进行自动识别是可行的 。 展开更多
关键词 分类识别 神经网络 偏震分析
下载PDF
Tunnel seismic tomography method for geological prediction and its application 被引量:52
2
作者 Zhao Yonggui Jiang Hui Zhao Xiaopeng 《Applied Geophysics》 SCIE CSCD 2006年第2期69-74,共6页
Typical existing methods of tunnel geological prediction include negative apparent velocity, horizontal seismic profile, and the Tunnel Seismic Prediction (TSP) method as this technology is under development at home... Typical existing methods of tunnel geological prediction include negative apparent velocity, horizontal seismic profile, and the Tunnel Seismic Prediction (TSP) method as this technology is under development at home and abroad. Considering simpler observational methods and data processing, it is hard to accurately determine the seismic velocity of the wall rock in the front of the tunnel face. Therefore, applying these defective methods may result in inaccurate geological inferences which will not provide sufficient evidence for classifying the wall rock characteristics. This paper proposes the Tunnel Seismic Tomography (TST) method using a spatial observation arrangement and migration and travel time inversion image processing to solve the problem of analyzing the velocity structure of wall rock in the front of the tunnel face and realize accurate imaging of the geological framework of the tunnel wall rock. This method is very appropriate for geological prediction under complex geological conditions. 展开更多
关键词 tunnel geological prediction TST technology velocity analysis seismic migration travel time inversion and image.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部