现有的医学健康问句数据大多数都是短文本,但短文本存在特征稀疏的局限性。对此,提出一种融合特征的方法,首先通过基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)字符级特征的输出取...现有的医学健康问句数据大多数都是短文本,但短文本存在特征稀疏的局限性。对此,提出一种融合特征的方法,首先通过基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)字符级特征的输出取平均并与BERT句子级特征的输出进行拼接,然后使用分类器进行分类。实验结果表明,本模型可以有效地提高模型提取特征的能力,在处理Kesci公众健康问句分类数据集上F1值达到83.92%,在处理中文健康公众问句数据集时F1值达到87%。展开更多
针对医疗文本语义稀疏、维度过高的问题,提出一种基于迁移学习和集成学习的多标签医疗文本分类算法(Trans-LSTM-CNN-Multi,TLCM)。该算法采用ALBERT(A Lite BERT)模型内部的多层双向Transfomer结构对大型语料库展开训练,获取通用领域的...针对医疗文本语义稀疏、维度过高的问题,提出一种基于迁移学习和集成学习的多标签医疗文本分类算法(Trans-LSTM-CNN-Multi,TLCM)。该算法采用ALBERT(A Lite BERT)模型内部的多层双向Transfomer结构对大型语料库展开训练,获取通用领域的文本动态字向量表示。然后,利用医学领域目标数据集通过迁移学习和模型微调技术实现ALBERT预训练语言模型在医学领域的文本语义增强。在此基础上,将上述通过迁移学习得到的文本语义增强模型输入到Bi-LSTM-CNN集成学习模块,进一步提取医学文本内容的重要信息特征。最后,基于二元交叉熵损失函数构造文本多标签分类器实现医疗文本分类。实验结果表明,通过迁移学习和集成学习的TLCM文本分类算法能有效提升医疗文本的分类性能,在中文健康问句数据集上整体F1值达到了91.8%。展开更多
文摘现有的医学健康问句数据大多数都是短文本,但短文本存在特征稀疏的局限性。对此,提出一种融合特征的方法,首先通过基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)字符级特征的输出取平均并与BERT句子级特征的输出进行拼接,然后使用分类器进行分类。实验结果表明,本模型可以有效地提高模型提取特征的能力,在处理Kesci公众健康问句分类数据集上F1值达到83.92%,在处理中文健康公众问句数据集时F1值达到87%。
文摘针对医疗文本语义稀疏、维度过高的问题,提出一种基于迁移学习和集成学习的多标签医疗文本分类算法(Trans-LSTM-CNN-Multi,TLCM)。该算法采用ALBERT(A Lite BERT)模型内部的多层双向Transfomer结构对大型语料库展开训练,获取通用领域的文本动态字向量表示。然后,利用医学领域目标数据集通过迁移学习和模型微调技术实现ALBERT预训练语言模型在医学领域的文本语义增强。在此基础上,将上述通过迁移学习得到的文本语义增强模型输入到Bi-LSTM-CNN集成学习模块,进一步提取医学文本内容的重要信息特征。最后,基于二元交叉熵损失函数构造文本多标签分类器实现医疗文本分类。实验结果表明,通过迁移学习和集成学习的TLCM文本分类算法能有效提升医疗文本的分类性能,在中文健康问句数据集上整体F1值达到了91.8%。