The cycle length distribution of a graph G of order n is a sequence (c1 (G),…, cn (G)), where ci (G) is the number of cycles of length i in G. In general, the graphs with cycle length distribution (c1(G) ,...The cycle length distribution of a graph G of order n is a sequence (c1 (G),…, cn (G)), where ci (G) is the number of cycles of length i in G. In general, the graphs with cycle length distribution (c1(G) ,…,cn(G)) are not unique. A graph G is determined by its cycle length distribution if the graph with cycle length distribution (c1 (G),…, cn (G)) is unique. Let Kn,n+r be a complete bipartite graph and A lohtaib in E(Kn,n+r). In this paper, we obtain: Let s 〉 1 be an integer. (1) If r = 2s, n 〉 s(s - 1) + 2|A|, then Kn,n+r - A (A lohtain in E(Kn,n+r),|A| ≤ 3) is determined by its cycle length distribution; (2) If r = 2s + 1,n 〉 s^2 + 2|A|, Kn,n+r - A (A lohtain in E(Kn,n+r), |A| ≤3) is determined by its cycle length distribution.展开更多
基金the National Natural Science Foundation of China(Nos.1070106810671191)
文摘The cycle length distribution of a graph G of order n is a sequence (c1 (G),…, cn (G)), where ci (G) is the number of cycles of length i in G. In general, the graphs with cycle length distribution (c1(G) ,…,cn(G)) are not unique. A graph G is determined by its cycle length distribution if the graph with cycle length distribution (c1 (G),…, cn (G)) is unique. Let Kn,n+r be a complete bipartite graph and A lohtaib in E(Kn,n+r). In this paper, we obtain: Let s 〉 1 be an integer. (1) If r = 2s, n 〉 s(s - 1) + 2|A|, then Kn,n+r - A (A lohtain in E(Kn,n+r),|A| ≤ 3) is determined by its cycle length distribution; (2) If r = 2s + 1,n 〉 s^2 + 2|A|, Kn,n+r - A (A lohtain in E(Kn,n+r), |A| ≤3) is determined by its cycle length distribution.