Magnetorheological elastomer (MRE) is a new kind of smart materials, the rheological properties can be controlled rapidly by the external magnetic field. It is mainly composed of rubber and micron-sized ferromagneti...Magnetorheological elastomer (MRE) is a new kind of smart materials, the rheological properties can be controlled rapidly by the external magnetic field. It is mainly composed of rubber and micron-sized ferromagnetic particles, which forms a chain-like structure. Therefore its mechanical, electric, and magnetic properties can be changed by the applied magnetic field, which is called as the magneto-induced effect. But this effect is not remarkable enough currently for the engineering application. So it is important for material preparation to optimize parameters to enhance the magneto-induced effect. In this work, based on chain-like model, some factors influencing the magneto-induced effect of MRE were analyzed theoretically by using dipole method with the normal distribution of chain's angle introduced. The factors included the oblique angle of particles chains, magnetic field intensity, and shear strain, etc. Some experiments were also carried out.展开更多
After compositing three representative ENSO indices,El Nio events have been divided into an eastern pattern(EP) and a central pattern(CP).By using EOF,correlation and composite analysis,the relationship and possible m...After compositing three representative ENSO indices,El Nio events have been divided into an eastern pattern(EP) and a central pattern(CP).By using EOF,correlation and composite analysis,the relationship and possible mechanisms between Indian Ocean Dipole(IOD) and two types of El Nio were investigated.IOD events,originating from Indo-Pacific scale air-sea interaction,are composed of two modes,which are associated with EP and CP El Ni o respectively.The IOD mode related to EP El Nio events(named as IOD1) is strongest at the depth of 50 to 150 m along the equatorial Indian Ocean.Besides,it shows a quasi-symmetric distribution,stronger in the south of the Equator.The IOD mode associated with CP El Nio(named as IOD2) has strongest signal in tropical southern Indian Ocean surface.In terms of mechanisms,before EP El Nio peaks,anomalous Walker circulation produces strong anomalous easterlies in equatorial Indian Ocean,resulting in upwelling in the east,decreasing sea temperature there;a couple of anomalous anticyclones(stronger in the south) form off the Equator where warm water accumulates,and thus the IOD1 occurs.When CP El Nio develops,anomalous Walker circulation is weaker and shifts its center to the west,therefore anomalous easterlies in equatorial Indian Ocean is less strong.Besides,the anticyclone south of Sumatra strengthens,and the southerlies east of it bring cold water from higher latitudes and northerlies west of it bring warm water from lower latitudes to the 15° to 25°S zone.Meanwhile,there exists strong divergence in the east and convergence in the west part of tropical southern Indian Ocean,making sea temperature fall and rise separately.Therefore,IOD2 lies farther south.展开更多
Equilibrium points and periodic orbits in irregular gravitational fields are significant for an understanding of dynamical behaviors around asteroids as well as deep space exploring missions. The dipole segment is a g...Equilibrium points and periodic orbits in irregular gravitational fields are significant for an understanding of dynamical behaviors around asteroids as well as deep space exploring missions. The dipole segment is a good alternative model to study qualitative dynamical properties near dumbbell-shaped asteroids. In this paper, the dipole segment model and its equilibrium points are simply introduced. The stability of the two triangular equilibrium points of the system is numerically examined. Next, periodic orbits are presented around the dipole segment model in two different cases, in which triangular equilibria are linearly stable and unstable,respectively. New types of periodic orbits are illustrated in detail, including their orbital shapes, periods and the Jacobi integral.The orbital stability, topological classification and bifurcations of these orbits are also analyzed with numerical continuations.展开更多
Using Joint Typhoon Warning Center tropical cyclone(TC)track data over the North Indian Ocean(NIO),National Centers for Environmental Prediction monthly reanalysis wind and outgoing long-wave radiation data,and Nation...Using Joint Typhoon Warning Center tropical cyclone(TC)track data over the North Indian Ocean(NIO),National Centers for Environmental Prediction monthly reanalysis wind and outgoing long-wave radiation data,and National Oceanic and Atmospheric Administration sea surface temperature data from 1981 to 2010,spatiotemporal distributions of NIO TC activity and relationships with local sea surface temperature(SST)were studied with statistical diagnosis methods.Results of empirical orthogonal function(EOF)analysis of NIO TC occurrence frequency show that the EOF1 mode,which accounts for 16%of total variance,consistently represents variations of TC occurrence frequency over the whole NIO basin.However,spatial dis- tributions of EOF1 mode are not uniform,mainly indicating variations of westward-moving TCs in the Bay of Bengal.The prevailing TC activity variation mode oscillates significantly on a quasi-5 year interannual time scale.NIO TC activity is notably influenced by the Indian Ocean dipole(IOD)mode.When the Indian Ocean is in a positive(negative)phase of the IOD, NIO SST anomalies are warm in the west(east)and cold in the east(west),which can weaken(strengthen)convection over the Bay of Bengal and eastern Arabian Sea,and cause anticyclonic(cyclonic)atmospheric circulation anomalies at low levels. This results in less(more)TC genesis and reduced(increased)opportunities for TC occurrence in the NIO.In addition,positive(negative)IOD events may strengthen(weaken)westerly steering flow over the Bay of Bengal,which further leads to fewer(more)westward-moving TCs which appear in regions west of 90°E in that bay.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.50830202 and No.60804018) and the Plan of the Excellent Talent for the New Century (NCET-07-0910). The authors also appreciate the help in the experimental instruments of Professor Xing-long Gong of University of Science and Technology of China deeply.
文摘Magnetorheological elastomer (MRE) is a new kind of smart materials, the rheological properties can be controlled rapidly by the external magnetic field. It is mainly composed of rubber and micron-sized ferromagnetic particles, which forms a chain-like structure. Therefore its mechanical, electric, and magnetic properties can be changed by the applied magnetic field, which is called as the magneto-induced effect. But this effect is not remarkable enough currently for the engineering application. So it is important for material preparation to optimize parameters to enhance the magneto-induced effect. In this work, based on chain-like model, some factors influencing the magneto-induced effect of MRE were analyzed theoretically by using dipole method with the normal distribution of chain's angle introduced. The factors included the oblique angle of particles chains, magnetic field intensity, and shear strain, etc. Some experiments were also carried out.
基金National Key Basic Research Program of China(973 Program,2012CB417403)
文摘After compositing three representative ENSO indices,El Nio events have been divided into an eastern pattern(EP) and a central pattern(CP).By using EOF,correlation and composite analysis,the relationship and possible mechanisms between Indian Ocean Dipole(IOD) and two types of El Nio were investigated.IOD events,originating from Indo-Pacific scale air-sea interaction,are composed of two modes,which are associated with EP and CP El Ni o respectively.The IOD mode related to EP El Nio events(named as IOD1) is strongest at the depth of 50 to 150 m along the equatorial Indian Ocean.Besides,it shows a quasi-symmetric distribution,stronger in the south of the Equator.The IOD mode associated with CP El Nio(named as IOD2) has strongest signal in tropical southern Indian Ocean surface.In terms of mechanisms,before EP El Nio peaks,anomalous Walker circulation produces strong anomalous easterlies in equatorial Indian Ocean,resulting in upwelling in the east,decreasing sea temperature there;a couple of anomalous anticyclones(stronger in the south) form off the Equator where warm water accumulates,and thus the IOD1 occurs.When CP El Nio develops,anomalous Walker circulation is weaker and shifts its center to the west,therefore anomalous easterlies in equatorial Indian Ocean is less strong.Besides,the anticyclone south of Sumatra strengthens,and the southerlies east of it bring cold water from higher latitudes and northerlies west of it bring warm water from lower latitudes to the 15° to 25°S zone.Meanwhile,there exists strong divergence in the east and convergence in the west part of tropical southern Indian Ocean,making sea temperature fall and rise separately.Therefore,IOD2 lies farther south.
基金supported by the National Natural Science Foundation of China(Grant Nos.11602019&11572035)the Young Elite Scientist Sponsorship Program by China Association for Science and Technology(Grant No.2016QNRC001)Excellent Young Teachers Program of Beijing Institute of Technology(Grant No.2015YG0605)
文摘Equilibrium points and periodic orbits in irregular gravitational fields are significant for an understanding of dynamical behaviors around asteroids as well as deep space exploring missions. The dipole segment is a good alternative model to study qualitative dynamical properties near dumbbell-shaped asteroids. In this paper, the dipole segment model and its equilibrium points are simply introduced. The stability of the two triangular equilibrium points of the system is numerically examined. Next, periodic orbits are presented around the dipole segment model in two different cases, in which triangular equilibria are linearly stable and unstable,respectively. New types of periodic orbits are illustrated in detail, including their orbital shapes, periods and the Jacobi integral.The orbital stability, topological classification and bifurcations of these orbits are also analyzed with numerical continuations.
基金supported by the National Natural Science Foundation of China (Grant No.U0933603)Special Scientific Research Fund of Meteorological Public Welfare Profession of China(Grant No.GYHY201106005)+1 种基金Natural Science Foundation of Yunnan Province(Grant No.2009CC002)Youth Foundation of Yunnan Province(Grant No.2012FD001)
文摘Using Joint Typhoon Warning Center tropical cyclone(TC)track data over the North Indian Ocean(NIO),National Centers for Environmental Prediction monthly reanalysis wind and outgoing long-wave radiation data,and National Oceanic and Atmospheric Administration sea surface temperature data from 1981 to 2010,spatiotemporal distributions of NIO TC activity and relationships with local sea surface temperature(SST)were studied with statistical diagnosis methods.Results of empirical orthogonal function(EOF)analysis of NIO TC occurrence frequency show that the EOF1 mode,which accounts for 16%of total variance,consistently represents variations of TC occurrence frequency over the whole NIO basin.However,spatial dis- tributions of EOF1 mode are not uniform,mainly indicating variations of westward-moving TCs in the Bay of Bengal.The prevailing TC activity variation mode oscillates significantly on a quasi-5 year interannual time scale.NIO TC activity is notably influenced by the Indian Ocean dipole(IOD)mode.When the Indian Ocean is in a positive(negative)phase of the IOD, NIO SST anomalies are warm in the west(east)and cold in the east(west),which can weaken(strengthen)convection over the Bay of Bengal and eastern Arabian Sea,and cause anticyclonic(cyclonic)atmospheric circulation anomalies at low levels. This results in less(more)TC genesis and reduced(increased)opportunities for TC occurrence in the NIO.In addition,positive(negative)IOD events may strengthen(weaken)westerly steering flow over the Bay of Bengal,which further leads to fewer(more)westward-moving TCs which appear in regions west of 90°E in that bay.