In this paper, a multiple parameters weighted fractional Fourier transform(MPWFRFT) and constellation scrambling(CS) method based physical layer(PHY) security system is proposed. The proposed scheme is executed by two...In this paper, a multiple parameters weighted fractional Fourier transform(MPWFRFT) and constellation scrambling(CS) method based physical layer(PHY) security system is proposed. The proposed scheme is executed by two steps. In the first step, MPWFRFT, implemented as the constellation beguiling(CB) method, is applied to change the signal's identity. In the second step the additional pseudo random phase information, regarded as the encryption key, is attached to the original signal to enhance the security. Typically, the pseudo random phase information can be removed effectively by the legitimate receiver. In contrast to the cryptography based encryption algorithms and the conventional PHY secrecy techniques, the main contribution of the proposed scheme is concentrated on the variation in signal's characteristics. Simulation results show that the proposed scheme can prevent the exchanging signal from eavesdroppers' classifi cation or inception. Moreover, the proposed scheme can guarantee the BER performance at a tolerate increasing in computational complexity for the legitimate receivers.展开更多
In this study, biodiesel was produced from waste vegetable oil using a heterogeneous base catalyst synthesized by impregnating potassium hydroxide(KOH) onto diatomite. Response surface methodology based on a central c...In this study, biodiesel was produced from waste vegetable oil using a heterogeneous base catalyst synthesized by impregnating potassium hydroxide(KOH) onto diatomite. Response surface methodology based on a central composite design was used to optimize four transesterification variables: temperature(30–120 °C), reaction time(2–6 h), methanol to oil mass ratio(10%–50%) and catalyst to oil mass ratio(2.1%–7.9%). A quadratic polynomial equation was obtained to correlate biodiesel yield to the transesterification variables. The diatomite–KOH catalyst was characterized using X-ray diffraction(XRD), Fourier transform infra-red spectroscopy(FTIR) and a scanning electron microscope(SEM) equipped with an energy dispersive X-ray detector(EDS). A maximum biodiesel yield of 90%(by mass) was obtained. The reaction conditions were as follows: methanol to oil mass ratio 30%, catalyst to oil mass ratio 5%, reaction time 4 h, and reaction temperature 75 °C. The XRD, FTIR and SEM(EDS) results confirm that the addition of KOH modifies the structure of diatomite. During impregnation and calcination of the diatomite catalyst the K2 O phase forms in the diatomite structural matrix and the active basicity of this compound facilitates the transesterification process. It is possible to recycle the diatomite–KOH catalyst up to three times. The crucial biodiesel properties from waste vegetable oil are within the American Standard Test Method specifications.展开更多
In this paper a joint timing and frequency synchronization method based on Fractional Fourier Transform (FIFT) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) system. The combination of two chirp...In this paper a joint timing and frequency synchronization method based on Fractional Fourier Transform (FIFT) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) system. The combination of two chirp signals with opposite chirp rates are used as the training signal, the received training signal with timing and frequency offset is transformed by FrFT and the two peaks representing two chirps in FrFT domain are detected, then the position coordinates of the two peaks are precisely corrected and substituted into an equation group to calculate timing and frequency offset simultaneously. This method only needs one FrFT calculation to implement synchronization, the computational complexity is equal to that of FFT and less than that of correlation or maximum likelihood calculation of existing methods, and estimation range of frequency offset is Large, greater than half the signal bandwidth, while the simulation results show that even at low SNR it can accurately estimate timing and frequency offset and the estimation error is less than that of existing methods.展开更多
We examine the possibility of using alternative roads when confronted with traffic congestion. One is the main road; the second alternative is through a secondary road into which additional cars are coming. To keep th...We examine the possibility of using alternative roads when confronted with traffic congestion. One is the main road; the second alternative is through a secondary road into which additional cars are coming. To keep the total number of vehicles constant, we subtract on the main road the same number of cars as where added to the bypass. We check the Fourier transform of the average on each traffic light cycles of the velocity on the main road and bypass. In the jammed region we obtained different results for the main road and for the bypass. Whereas for the main road we obtained l/f, for the bypass we obtained "red noise", i.e., 1/f2.展开更多
A new MoO3/SO4 2--TiO2 catalyst was prepared by a conventional impregnation of SO4 2-/TiO2 as carrier with an aqueous solution of ammonium molybdate and used for the synthesis of transesterification of dimethyl carbon...A new MoO3/SO4 2--TiO2 catalyst was prepared by a conventional impregnation of SO4 2-/TiO2 as carrier with an aqueous solution of ammonium molybdate and used for the synthesis of transesterification of dimethyl carbonate(DMC)with phenol.A series of MoO3/SO4 2--TiO2 catalysts with different MoO3 loadings were investigated and characterized using X-ray diffraction(XRD),Fourier transform infrared spectrometer(FTIR),NH3-temperature programmed desorption(NH3-TPD)and X-ray photoelectron spectroscopy(XPS).The results show that MoO3 loading is related to the activity of transesterification reaction.With the increase of MoO3 loading,the activity of transesterification reaction increases.The sulfur species in the catalyst have an influence on the molybdenum species,and lead to an increase in the electropositive of molybdenum,which promotes the catalytic activity of MoO3/SO4 2--TiO2.Among the series of catalysts prepared,MoO3/SO4 2--TiO2 with 10% MoO3 and 823 K calcinated is found to be the most active catalyst for transesterification reaction.Under the reaction conditions of 453 K and 12 h,the conversion of DMC is 30.5 %,and the yields of MPC and DPC reach 21.2 % and 8.7 %,respectively.展开更多
基金supported by the National Basic Research Program of China under Grant 2013CB329003in part by the National Natural Science Foundation General Program of China under Grant 61171110
文摘In this paper, a multiple parameters weighted fractional Fourier transform(MPWFRFT) and constellation scrambling(CS) method based physical layer(PHY) security system is proposed. The proposed scheme is executed by two steps. In the first step, MPWFRFT, implemented as the constellation beguiling(CB) method, is applied to change the signal's identity. In the second step the additional pseudo random phase information, regarded as the encryption key, is attached to the original signal to enhance the security. Typically, the pseudo random phase information can be removed effectively by the legitimate receiver. In contrast to the cryptography based encryption algorithms and the conventional PHY secrecy techniques, the main contribution of the proposed scheme is concentrated on the variation in signal's characteristics. Simulation results show that the proposed scheme can prevent the exchanging signal from eavesdroppers' classifi cation or inception. Moreover, the proposed scheme can guarantee the BER performance at a tolerate increasing in computational complexity for the legitimate receivers.
基金support by the centre of research excellence(Vaal University of Technology)grant no 2188-2892 to fund this project is gratefully acknowledged
文摘In this study, biodiesel was produced from waste vegetable oil using a heterogeneous base catalyst synthesized by impregnating potassium hydroxide(KOH) onto diatomite. Response surface methodology based on a central composite design was used to optimize four transesterification variables: temperature(30–120 °C), reaction time(2–6 h), methanol to oil mass ratio(10%–50%) and catalyst to oil mass ratio(2.1%–7.9%). A quadratic polynomial equation was obtained to correlate biodiesel yield to the transesterification variables. The diatomite–KOH catalyst was characterized using X-ray diffraction(XRD), Fourier transform infra-red spectroscopy(FTIR) and a scanning electron microscope(SEM) equipped with an energy dispersive X-ray detector(EDS). A maximum biodiesel yield of 90%(by mass) was obtained. The reaction conditions were as follows: methanol to oil mass ratio 30%, catalyst to oil mass ratio 5%, reaction time 4 h, and reaction temperature 75 °C. The XRD, FTIR and SEM(EDS) results confirm that the addition of KOH modifies the structure of diatomite. During impregnation and calcination of the diatomite catalyst the K2 O phase forms in the diatomite structural matrix and the active basicity of this compound facilitates the transesterification process. It is possible to recycle the diatomite–KOH catalyst up to three times. The crucial biodiesel properties from waste vegetable oil are within the American Standard Test Method specifications.
文摘In this paper a joint timing and frequency synchronization method based on Fractional Fourier Transform (FIFT) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) system. The combination of two chirp signals with opposite chirp rates are used as the training signal, the received training signal with timing and frequency offset is transformed by FrFT and the two peaks representing two chirps in FrFT domain are detected, then the position coordinates of the two peaks are precisely corrected and substituted into an equation group to calculate timing and frequency offset simultaneously. This method only needs one FrFT calculation to implement synchronization, the computational complexity is equal to that of FFT and less than that of correlation or maximum likelihood calculation of existing methods, and estimation range of frequency offset is Large, greater than half the signal bandwidth, while the simulation results show that even at low SNR it can accurately estimate timing and frequency offset and the estimation error is less than that of existing methods.
文摘We examine the possibility of using alternative roads when confronted with traffic congestion. One is the main road; the second alternative is through a secondary road into which additional cars are coming. To keep the total number of vehicles constant, we subtract on the main road the same number of cars as where added to the bypass. We check the Fourier transform of the average on each traffic light cycles of the velocity on the main road and bypass. In the jammed region we obtained different results for the main road and for the bypass. Whereas for the main road we obtained l/f, for the bypass we obtained "red noise", i.e., 1/f2.
基金Project(20936003)supported by the National Natural Science Foundation of ChinaProject(2012CB723105)supported by the National Basic Research Program of China
文摘A new MoO3/SO4 2--TiO2 catalyst was prepared by a conventional impregnation of SO4 2-/TiO2 as carrier with an aqueous solution of ammonium molybdate and used for the synthesis of transesterification of dimethyl carbonate(DMC)with phenol.A series of MoO3/SO4 2--TiO2 catalysts with different MoO3 loadings were investigated and characterized using X-ray diffraction(XRD),Fourier transform infrared spectrometer(FTIR),NH3-temperature programmed desorption(NH3-TPD)and X-ray photoelectron spectroscopy(XPS).The results show that MoO3 loading is related to the activity of transesterification reaction.With the increase of MoO3 loading,the activity of transesterification reaction increases.The sulfur species in the catalyst have an influence on the molybdenum species,and lead to an increase in the electropositive of molybdenum,which promotes the catalytic activity of MoO3/SO4 2--TiO2.Among the series of catalysts prepared,MoO3/SO4 2--TiO2 with 10% MoO3 and 823 K calcinated is found to be the most active catalyst for transesterification reaction.Under the reaction conditions of 453 K and 12 h,the conversion of DMC is 30.5 %,and the yields of MPC and DPC reach 21.2 % and 8.7 %,respectively.