The sequence of the densification and hydrocarbon charging of the Xu2 reservoir in the Anyue–Hechuan area of Central Sichuan Basin is discussed.The diagenetic sequence is considered a time line to determine the histo...The sequence of the densification and hydrocarbon charging of the Xu2 reservoir in the Anyue–Hechuan area of Central Sichuan Basin is discussed.The diagenetic sequence is considered a time line to determine the historical relationship between the densification process and the hydrocarbon charging of the Xu2 reservoir in the study area:Early diagenetic stage B(the first stage of hydrocarbon charging,which was about 200–160 Ma ago,with a porosity of about 20%,consolidated and not tight)→middle diagenetic stage A(the second stage of hydrocarbon charging,which was about 140–120 Ma ago,with a porosity of 10%–20%and relatively tight)→middle diagenetic stage B(the third stage of hydrocarbon charging,which was about 20–5 Ma ago,with a porosity of 6%–10%and tight;However,fractures have developed).The study results prove that large-scale hydrocarbon charging and accumulation completed before the densification of the Xu2 reservoir,showing that the Upper Triassic Xujiahe Fm unconventional tight reservoir in the Sichuan Basin is prospective for exploration.展开更多
Petroleum geologists have paid great attentions to the volcanic reservoirs of Songliao Basin in NE Chi- na. There are plenty of subvolcanic rocks in the Songliao Basin accompanying the Early Cretaceous Yingeheng Forma...Petroleum geologists have paid great attentions to the volcanic reservoirs of Songliao Basin in NE Chi- na. There are plenty of subvolcanic rocks in the Songliao Basin accompanying the Early Cretaceous Yingeheng Formation. The logging data show the good reservoir potential of these intrusive rocks but the distribution char- acteristics and formation mechanisms of these reservoirs are not clearly understood. Based on the previous stud- ies by using coring, cuts and logging data of Yingtai rift depression, the reservoirs' characteristics of intrusive rocks are presented. There are two types of intrusive rocks namely the syenodiorite-porphyrite and diabase which occur as laccolith and/or sill, both having the characteristics of low gamma and high density with little primary porosity and permeability. The prevalent reservoir porosity is the secondary porosity, such as spongy/cavernous pore, tectonic fracture. The laboratory data of porosity of diabase can reach 6.7%, but the permeability is less than 0.6 x 10-3μm2, median pressure is high, indicating that the pore throat of this kind reservoir is small. The maximum logging porosity is about 12%. The change of porosity does not correlate to the buried depth. It is the major significant differences in the distributive characteristics compared to the normal sedimentary rock reservoirs. Most of intrusive rocks underwent alteration diagenesis whilst some were subjected to precipitation diagenesis. The spongy and cavernous pore can be formed during the alteration processes of plagioclase to illite and pyroxene to chlorite. The secondary porosity is greatly correlated with the alteration intensity of matrix, pla- gioclase and pyroxene. There are pyroxenes and more plagioclases in diabase, which cause the higher alteration intensity than the syenodiorite-porphyrites in the same acid fluid. So the porosity of diabase is higher than that of syenodiorite-porphyrites. The top or/and bottom part of intrusive rocks develop the higher porosity. Because those parts are easy to contact formation fluid, and the shrink fractures give the more surface for reaction be- tween fluid and rock. The porosity of intrusive rocks is same to the volcanic rocks in Yingtai rift depression and Xujiaweizi rift depression which bear the prolific gas. It suggests good reservoir potential. Intrusive rocks are hosted by the dark mudstone which indicates semi-deep and deep lake facies belt.展开更多
基金Project(41372141) supported by the National Natural Science Foundation of ChinaProject(2008ZX05001–05–01) supported by Special and Significant Project of National Science and Technology,China
文摘The sequence of the densification and hydrocarbon charging of the Xu2 reservoir in the Anyue–Hechuan area of Central Sichuan Basin is discussed.The diagenetic sequence is considered a time line to determine the historical relationship between the densification process and the hydrocarbon charging of the Xu2 reservoir in the study area:Early diagenetic stage B(the first stage of hydrocarbon charging,which was about 200–160 Ma ago,with a porosity of about 20%,consolidated and not tight)→middle diagenetic stage A(the second stage of hydrocarbon charging,which was about 140–120 Ma ago,with a porosity of 10%–20%and relatively tight)→middle diagenetic stage B(the third stage of hydrocarbon charging,which was about 20–5 Ma ago,with a porosity of 6%–10%and tight;However,fractures have developed).The study results prove that large-scale hydrocarbon charging and accumulation completed before the densification of the Xu2 reservoir,showing that the Upper Triassic Xujiahe Fm unconventional tight reservoir in the Sichuan Basin is prospective for exploration.
基金Supported by Projects of the National Natural Science Foundation of China(41002038)the National Major Fundamental Research and Development Projects(Nos.2012CB822002,2009CB219304)
文摘Petroleum geologists have paid great attentions to the volcanic reservoirs of Songliao Basin in NE Chi- na. There are plenty of subvolcanic rocks in the Songliao Basin accompanying the Early Cretaceous Yingeheng Formation. The logging data show the good reservoir potential of these intrusive rocks but the distribution char- acteristics and formation mechanisms of these reservoirs are not clearly understood. Based on the previous stud- ies by using coring, cuts and logging data of Yingtai rift depression, the reservoirs' characteristics of intrusive rocks are presented. There are two types of intrusive rocks namely the syenodiorite-porphyrite and diabase which occur as laccolith and/or sill, both having the characteristics of low gamma and high density with little primary porosity and permeability. The prevalent reservoir porosity is the secondary porosity, such as spongy/cavernous pore, tectonic fracture. The laboratory data of porosity of diabase can reach 6.7%, but the permeability is less than 0.6 x 10-3μm2, median pressure is high, indicating that the pore throat of this kind reservoir is small. The maximum logging porosity is about 12%. The change of porosity does not correlate to the buried depth. It is the major significant differences in the distributive characteristics compared to the normal sedimentary rock reservoirs. Most of intrusive rocks underwent alteration diagenesis whilst some were subjected to precipitation diagenesis. The spongy and cavernous pore can be formed during the alteration processes of plagioclase to illite and pyroxene to chlorite. The secondary porosity is greatly correlated with the alteration intensity of matrix, pla- gioclase and pyroxene. There are pyroxenes and more plagioclases in diabase, which cause the higher alteration intensity than the syenodiorite-porphyrites in the same acid fluid. So the porosity of diabase is higher than that of syenodiorite-porphyrites. The top or/and bottom part of intrusive rocks develop the higher porosity. Because those parts are easy to contact formation fluid, and the shrink fractures give the more surface for reaction be- tween fluid and rock. The porosity of intrusive rocks is same to the volcanic rocks in Yingtai rift depression and Xujiaweizi rift depression which bear the prolific gas. It suggests good reservoir potential. Intrusive rocks are hosted by the dark mudstone which indicates semi-deep and deep lake facies belt.