An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral config...An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral configuration. The structure of the flow was examined via three dimensional iso surfaces of the Q criterion. Vortical cores were observed on the leeward surface of the balloons. The swirling tube flows generated by these vortical cores were depicted through three dimensional path lines. The flow dynamics were visualized via time series snapshots of two dimensional vorticity contours perpendicular to the flow direction; revealing the turbulent swinging motions of the aforementioned shedding-swirling tube flows. The time history of the hydrodynamic loading was presented in terms of lift and drag coefficients. Drag coefficient of each individual balloon in the floral configuration was smaller than that of a single balloon. It was found that the total drag coefficient of the floral unit of three touching balloons, i.e. summation of the drag coefficients of the balloons, is not too much larger than that of a single balloon whereas it provides three times the storage capacity. In addition to its practical significance in designing appropriate foundation and supports, the instantaneous hydrodynamic loading was used to determine the frequency of the turbulent swirling-swinging motions of the shedding vortex tubes; the Strouhal number was found to be larger than that of a single sphere at the same Reynolds number.展开更多
During the 15th Conference of the Parties (COP 15), Parties agreed that reducing emissions from deforesta- tion and forest degradation and enhancing 'removals of greenhouse gas emission by forests' (REDD+) in d...During the 15th Conference of the Parties (COP 15), Parties agreed that reducing emissions from deforesta- tion and forest degradation and enhancing 'removals of greenhouse gas emission by forests' (REDD+) in developing countries through positive incentives under the United Nations Framework Convention on Climate Change (UNFCCC) was capable of dealing with global emissions. As REDD+ seeks to lower emissions by stopping deforestation and for- est degradation with an international payment tier according to baseline scenarios, opportunities for ecosystem benefits such as slowing habitat fragmentation, conservation of forest biodiversity, soil conservation may be also part of this effort. The primary objective of this study is to evaluate ecosystem-based benefits of REDD+, and to identify the rela- tionships with carbon stock changes. To achieve this goal, high resolution satellite images are combined with Normal- ized Difference Vegetation Index (NDVI) to identify historical deforestation in study area of Central Kalimantan, In- donesia. The carbon emissions for the period of 2000-2005 and 2005-2009 are 2.73 ×10^5 t CO2 and 1.47× 10^6 t CO2 respectively, showing an increasing trend in recent years. Dring 2005-2009, number of patches (NP), patch density (PD), mean shape index distribution (SHAPE_MN) increased 30.8%, 30.7% and 7.6%. Meanwhile, largest patch index (LPI), mean area (AREA MN), area-weighted mean of shape index distribution (SHAPE_AM), neighbor distance (ENN_MN) and interspersion and juxtaposition index (IJI) decreased by 55.3%, 29.7%, 15.8%, 53.4% and 21.5% re- spectively. The area regarding as positive correlation between carbon emissions and soil erosion was approximately 8.9 x l03 ha corresponding to 96.0% of the changing forest. These results support the view that there are strong syner- gies among carbon loss, forest fragmentation and soil erosion in tropical forests. Such mechanism of REDD+ is likely to present opportunities for multiple benefits that fall outside the scope of carbon stocks.展开更多
文摘An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral configuration. The structure of the flow was examined via three dimensional iso surfaces of the Q criterion. Vortical cores were observed on the leeward surface of the balloons. The swirling tube flows generated by these vortical cores were depicted through three dimensional path lines. The flow dynamics were visualized via time series snapshots of two dimensional vorticity contours perpendicular to the flow direction; revealing the turbulent swinging motions of the aforementioned shedding-swirling tube flows. The time history of the hydrodynamic loading was presented in terms of lift and drag coefficients. Drag coefficient of each individual balloon in the floral configuration was smaller than that of a single balloon. It was found that the total drag coefficient of the floral unit of three touching balloons, i.e. summation of the drag coefficients of the balloons, is not too much larger than that of a single balloon whereas it provides three times the storage capacity. In addition to its practical significance in designing appropriate foundation and supports, the instantaneous hydrodynamic loading was used to determine the frequency of the turbulent swirling-swinging motions of the shedding vortex tubes; the Strouhal number was found to be larger than that of a single sphere at the same Reynolds number.
基金Under the auspices of National Basic Research Program of China (No. 2012CB955800,2012CB955804)National Natural Science Foundation of China (No. 41171438)+2 种基金Foundation of Asia-Pacific Network for Global Change Research (No.EBLU2010-01NSY-Suneetha)Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA05050000)Science Foundation of Government of Henan Province & Ministry of Education (No. SBGJ090110,2010YBZR043)
文摘During the 15th Conference of the Parties (COP 15), Parties agreed that reducing emissions from deforesta- tion and forest degradation and enhancing 'removals of greenhouse gas emission by forests' (REDD+) in developing countries through positive incentives under the United Nations Framework Convention on Climate Change (UNFCCC) was capable of dealing with global emissions. As REDD+ seeks to lower emissions by stopping deforestation and for- est degradation with an international payment tier according to baseline scenarios, opportunities for ecosystem benefits such as slowing habitat fragmentation, conservation of forest biodiversity, soil conservation may be also part of this effort. The primary objective of this study is to evaluate ecosystem-based benefits of REDD+, and to identify the rela- tionships with carbon stock changes. To achieve this goal, high resolution satellite images are combined with Normal- ized Difference Vegetation Index (NDVI) to identify historical deforestation in study area of Central Kalimantan, In- donesia. The carbon emissions for the period of 2000-2005 and 2005-2009 are 2.73 ×10^5 t CO2 and 1.47× 10^6 t CO2 respectively, showing an increasing trend in recent years. Dring 2005-2009, number of patches (NP), patch density (PD), mean shape index distribution (SHAPE_MN) increased 30.8%, 30.7% and 7.6%. Meanwhile, largest patch index (LPI), mean area (AREA MN), area-weighted mean of shape index distribution (SHAPE_AM), neighbor distance (ENN_MN) and interspersion and juxtaposition index (IJI) decreased by 55.3%, 29.7%, 15.8%, 53.4% and 21.5% re- spectively. The area regarding as positive correlation between carbon emissions and soil erosion was approximately 8.9 x l03 ha corresponding to 96.0% of the changing forest. These results support the view that there are strong syner- gies among carbon loss, forest fragmentation and soil erosion in tropical forests. Such mechanism of REDD+ is likely to present opportunities for multiple benefits that fall outside the scope of carbon stocks.