This paper proposed the reclosing method in distribution system with battery energy storage system(BESS)using wavelet transform(WT).The proposed method performs the WT of load current and then calculates the absolute ...This paper proposed the reclosing method in distribution system with battery energy storage system(BESS)using wavelet transform(WT).The proposed method performs the WT of load current and then calculates the absolute value of slope of detail coefficient.The mother wavelet used is db4of level6.The fault clearing is detected using the rapid increase of this value.After the detection of fault clearing,the reclosing is performed.To verify the proposed method,various simulations according to the fault clearing times,fault resistances,and fault lengths are performed using EMTP.The simulation results show that fault clearing can be detected using proposed absolute value of slope of detail coefficient and hence the reclosing can be performed successfully.展开更多
This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emerg...This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emergency conditions. When the system is grid-connected, BES regulates the fluctuated power output which ensures smooth net injected power from the PV/BES system. In islanded operation, BES system is transferred to single master operation during which the frequency and voltage of the islanded microgrid are regulated at the desired level. PSCAD/EMTDC simulation validates the proposed method and obtained favorable results on power set-point tracking strategies with very small deviations of net output power compared to the power set-point. The state-of-charge regulation scheme also very effective with SOC has been regulated between 32% and 79% range.展开更多
An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral config...An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral configuration. The structure of the flow was examined via three dimensional iso surfaces of the Q criterion. Vortical cores were observed on the leeward surface of the balloons. The swirling tube flows generated by these vortical cores were depicted through three dimensional path lines. The flow dynamics were visualized via time series snapshots of two dimensional vorticity contours perpendicular to the flow direction; revealing the turbulent swinging motions of the aforementioned shedding-swirling tube flows. The time history of the hydrodynamic loading was presented in terms of lift and drag coefficients. Drag coefficient of each individual balloon in the floral configuration was smaller than that of a single balloon. It was found that the total drag coefficient of the floral unit of three touching balloons, i.e. summation of the drag coefficients of the balloons, is not too much larger than that of a single balloon whereas it provides three times the storage capacity. In addition to its practical significance in designing appropriate foundation and supports, the instantaneous hydrodynamic loading was used to determine the frequency of the turbulent swirling-swinging motions of the shedding vortex tubes; the Strouhal number was found to be larger than that of a single sphere at the same Reynolds number.展开更多
For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a mult...For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a multi-objective optimization scheduling strategy considering energy storage participation is proposed.Firstly,the new energy power system model is established,and the PP scenario generation and reduction frame based on the autoregressive moving average model and Kantorovich-distance is proposed.Then,based on the optimization goal of the system operation cost minimization and the PP output power consumption maximization,the multi-objective optimization scheduling model is established.Finally,the simulation results show that introducing energy storage into the system can effectively reduce the system operation cost and improve the utilization efficiency of PP.展开更多
A power system with proton exchange membrane fuel cells (PEMFC) was designed for thermal underwater glider.Heat generated by PEMFC is used as the propulsion power of the glider,and the electricity is used in the contr...A power system with proton exchange membrane fuel cells (PEMFC) was designed for thermal underwater glider.Heat generated by PEMFC is used as the propulsion power of the glider,and the electricity is used in the control and sensor system.An electric energy storage system (ESS) is required which possesses high power density with good cycle life.Ultracapacitors which exhibit high power density and cycle life are considered as energy storage devices.Simulations based on a specific voyage condition indicate that ESS with ultracapacitors has positive effects on reducing the output power demand of PEMFC and lightening the power system.Experimental results show that the state of charge (SOC) is related to the capacitance and resistance in ultracapacitor ESS.展开更多
A novel fault ride-through strategy for wind turbines,based on permanent magnet synchronous generator,has been proposed.The proposed strategy analytically formulates the reference current signals,disregarding grid fau...A novel fault ride-through strategy for wind turbines,based on permanent magnet synchronous generator,has been proposed.The proposed strategy analytically formulates the reference current signals,disregarding grid fault type and utilizes the whole system capacity to inject the reactive current required by grid codes and deliver maximum possible active power to support grid frequency and avoid generation loss.All this has been reached by taking the grid-side converter’s phase current limit into account.The strategy is compatible with different countries’grid codes and prevents pulsating active power injection,in an unbalanced grid condition.Model predictive current controller is applied to handling rapid transients.During faults,the energy storage system maintains DC-link voltage,which causes voltage fluctuations to be eliminated,significantly.A fault ride-through strategy was proposed for PMSG-based wind turbines,neglecting fault characteristics,second,reaching maximum possible grid support in faulty grid conditions,while avoiding over-current and third,considerable reduction in energy storage system size and power rating.Inspiring simulations have been carried out through MATLAB/SIMULINK to validate the feasibility and competency of the proposed fault ride-through method and efficiency of the entire control system.展开更多
A novel three-phase active power filter (APF) circuit with photovoltaic (PV) system to improve the quality of service and to reduce the capacity of energy storage capacitor is presented. The energy balance concept...A novel three-phase active power filter (APF) circuit with photovoltaic (PV) system to improve the quality of service and to reduce the capacity of energy storage capacitor is presented. The energy balance concept and sampling technique were used to simplify the calculation algorithm for the required utility source current and to control the voltage of the energy storage capacitor. The feasibility was verified by using the Pspice simulations and experiments. When the APF mode was used during non-operational period, not only the utilization rate, power factor and power quality could be improved, but also the capacity of energy storage capacitor could sparing. As the results, the advantages of the APF circuit are simplicity of control circuits, low cost, and good transient response.展开更多
In l,ebanon, hybrid wind/PV systems are used to provide electricity when the public electricity is cut off This paper treats the storage problems of electrical energy generated by the used renewable sources. A theoret...In l,ebanon, hybrid wind/PV systems are used to provide electricity when the public electricity is cut off This paper treats the storage problems of electrical energy generated by the used renewable sources. A theoretical study on two types of electrical energy storage systems is given. These systems are the electrochemical energy storage devices (batteries) and the potential (or hydraulic) energy storage system. In order to find the limiting case of use between these two energy storage systems, economical study and comparison between them are discussed and analyzed.展开更多
A novel flywheel energy storage (FES) motor/generator (M/G) was proposed for marine systems. The purpose was to improve the power quality of a marine power system (MPS) and strengthen the energy recycle. Two str...A novel flywheel energy storage (FES) motor/generator (M/G) was proposed for marine systems. The purpose was to improve the power quality of a marine power system (MPS) and strengthen the energy recycle. Two structures including the magnetic or non-magnetic inner-rotor were contrasted in the magnetostatic field by using finite element analysis (FEA). By optimally designing the size parameters, the average speed of FEA results of was 17 200 r/m, and the current was controlled between 62 and 68 A in the transient field. The electrical machine electromagnetism design was further optimized by the FEA in the temperature field, to find the local overheating point under the normal operation condition and provide guidance for the cooling system. Finally, it can be concluded from the comprehensive physical field analysis that the novel redundant structure M/G can improve the efficiency of the M/G and maintain the stability of the MPS.展开更多
A hydrogen production and conversion plant from wind power was installed in the Sotavento wind farm by Gas Natural and the Galician Government. This facility is the highest electrolysis power installed at the European...A hydrogen production and conversion plant from wind power was installed in the Sotavento wind farm by Gas Natural and the Galician Government. This facility is the highest electrolysis power installed at the European level. It consists of an electrolyser of 300 kW, a piston compressor, a 1,725 Nm3 H2 storage system and an engine of 55 kW. This pilot plant is being operated by Natural Gas in order to extrapolate its behavior to that of an industrial facility capable of managing all the production of Sotavento wind farm following different strategies: balancing, peak-shaving and repowering. In this paper, preliminary results at the facility are presented. The aim of these first tests has been to describe the operation of equipment under operating conditions required in the management of wind power production, in order to understand the behavior of the different equipment and try to make them suitable for this type of applications. This paper shows the difficulty of operating these systems under the wind power requirements.展开更多
Botswana currently depends on electricity generated from coal-based power plant or electricity supplied from the border in South Africa. The country has good reserves of coal and the solar radiation is sufficiently hi...Botswana currently depends on electricity generated from coal-based power plant or electricity supplied from the border in South Africa. The country has good reserves of coal and the solar radiation is sufficiently high to make solar thermal attractive for generating electricity. The paper presents two conceptual coal-fired power station designs in which a solar sub-system augments heat to the feed heaters or to the boiler. The thermal and economic analyses showed enhanced system performance which indicates that solar power could be embedded into existing fossil fuel plants or new power stations. Integrating solar energy with existing or new fossil fuel based power plants could reduce the cost of stand-alone solar thermal power stations, reduce CO2 emissions and produce experience necessary to operate a full scale solar thermal electricity generation facility.展开更多
Due to the environmental impact of energy usage and increased price of fusel fuel, consumers need to be encouraged to use renewable energy sources. The IHICSSWHS (indirect heating integrated collector storage solar w...Due to the environmental impact of energy usage and increased price of fusel fuel, consumers need to be encouraged to use renewable energy sources. The IHICSSWHS (indirect heating integrated collector storage solar water heater system) is one of the most economical systems. It incorporates the collection of a solar energy component and a hot water storage component in one unit. The objective of this study was to investigate ways to enhance the thermal performance of the system. Two configurations of the system were studied: system with double row HX (heat exchanger) and tube length of 16.2 m, and system with single row HX and tube length of 8.1 m and 10.8 m. The service water tube inside diameter was also varied to 10.7 mm and 17.1 mm The steady state continuity, momentum and energy equations were numerically solved, using FLUENT software. A standard k-w turbulent model and surface-to-surface radiation model were used. The result showed that the system of 10.8 m tube length and single row HX provided higher outlet temperature than the system of 16.2 m and double row HX. Therefore, a significant reduction in cost and power usage can be achieved by using a single row HX.展开更多
This paper deals with control method related to a wind system operating in stand-alone applications. The stand-alone wind system is composed of three energy transfer subsystems: wind generator subsystem (wind turbin...This paper deals with control method related to a wind system operating in stand-alone applications. The stand-alone wind system is composed of three energy transfer subsystems: wind generator subsystem (wind turbine and electrical generator), energy storage subsystem, respectively, specific local network subsystem (controlled loads). This wind power system performs in the same time the maximization of wind energy conversion and the power balance between produced and required power. Three structures of the energy storage subsystem, based on buffer battery operation and/or capacitor voltage control, are discussed. The simulation results show that the proposed stand-alone wind power system ensures a good management of the local energy request. The design of the structures is analyzed in Matlab/Simulink environment, using PowerSim toolbox.展开更多
The design and construction of an experimental solar hybrid vehicle based on the combination of photovoltaic solar energy as the main source of electricity and electric power supplied by a generator activated by the d...The design and construction of an experimental solar hybrid vehicle based on the combination of photovoltaic solar energy as the main source of electricity and electric power supplied by a generator activated by the driver's pedaling is introduced. The vehicle has a battery to store the energy provided by both systems. The development was motivated by a Latin American solar car race through the Atacama Desert in Chile and the initiative to promote the use of clean energy for transport. A general description of the vehicle, its energetic aspects and experimental results are presented.展开更多
文摘This paper proposed the reclosing method in distribution system with battery energy storage system(BESS)using wavelet transform(WT).The proposed method performs the WT of load current and then calculates the absolute value of slope of detail coefficient.The mother wavelet used is db4of level6.The fault clearing is detected using the rapid increase of this value.After the detection of fault clearing,the reclosing is performed.To verify the proposed method,various simulations according to the fault clearing times,fault resistances,and fault lengths are performed using EMTP.The simulation results show that fault clearing can be detected using proposed absolute value of slope of detail coefficient and hence the reclosing can be performed successfully.
文摘This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emergency conditions. When the system is grid-connected, BES regulates the fluctuated power output which ensures smooth net injected power from the PV/BES system. In islanded operation, BES system is transferred to single master operation during which the frequency and voltage of the islanded microgrid are regulated at the desired level. PSCAD/EMTDC simulation validates the proposed method and obtained favorable results on power set-point tracking strategies with very small deviations of net output power compared to the power set-point. The state-of-charge regulation scheme also very effective with SOC has been regulated between 32% and 79% range.
文摘An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral configuration. The structure of the flow was examined via three dimensional iso surfaces of the Q criterion. Vortical cores were observed on the leeward surface of the balloons. The swirling tube flows generated by these vortical cores were depicted through three dimensional path lines. The flow dynamics were visualized via time series snapshots of two dimensional vorticity contours perpendicular to the flow direction; revealing the turbulent swinging motions of the aforementioned shedding-swirling tube flows. The time history of the hydrodynamic loading was presented in terms of lift and drag coefficients. Drag coefficient of each individual balloon in the floral configuration was smaller than that of a single balloon. It was found that the total drag coefficient of the floral unit of three touching balloons, i.e. summation of the drag coefficients of the balloons, is not too much larger than that of a single balloon whereas it provides three times the storage capacity. In addition to its practical significance in designing appropriate foundation and supports, the instantaneous hydrodynamic loading was used to determine the frequency of the turbulent swirling-swinging motions of the shedding vortex tubes; the Strouhal number was found to be larger than that of a single sphere at the same Reynolds number.
基金Science and Technology Project of State Grid Corporation of China(No.SGGSKY00FJJS1800140)。
文摘For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a multi-objective optimization scheduling strategy considering energy storage participation is proposed.Firstly,the new energy power system model is established,and the PP scenario generation and reduction frame based on the autoregressive moving average model and Kantorovich-distance is proposed.Then,based on the optimization goal of the system operation cost minimization and the PP output power consumption maximization,the multi-objective optimization scheduling model is established.Finally,the simulation results show that introducing energy storage into the system can effectively reduce the system operation cost and improve the utilization efficiency of PP.
基金Supported by the State Key Program of National Natural Science Foundation of China (No. 50835006)Science & Technology Support Planning Foundation of Tianjin (No. 09ZCKFGX03000)
文摘A power system with proton exchange membrane fuel cells (PEMFC) was designed for thermal underwater glider.Heat generated by PEMFC is used as the propulsion power of the glider,and the electricity is used in the control and sensor system.An electric energy storage system (ESS) is required which possesses high power density with good cycle life.Ultracapacitors which exhibit high power density and cycle life are considered as energy storage devices.Simulations based on a specific voyage condition indicate that ESS with ultracapacitors has positive effects on reducing the output power demand of PEMFC and lightening the power system.Experimental results show that the state of charge (SOC) is related to the capacitance and resistance in ultracapacitor ESS.
文摘A novel fault ride-through strategy for wind turbines,based on permanent magnet synchronous generator,has been proposed.The proposed strategy analytically formulates the reference current signals,disregarding grid fault type and utilizes the whole system capacity to inject the reactive current required by grid codes and deliver maximum possible active power to support grid frequency and avoid generation loss.All this has been reached by taking the grid-side converter’s phase current limit into account.The strategy is compatible with different countries’grid codes and prevents pulsating active power injection,in an unbalanced grid condition.Model predictive current controller is applied to handling rapid transients.During faults,the energy storage system maintains DC-link voltage,which causes voltage fluctuations to be eliminated,significantly.A fault ride-through strategy was proposed for PMSG-based wind turbines,neglecting fault characteristics,second,reaching maximum possible grid support in faulty grid conditions,while avoiding over-current and third,considerable reduction in energy storage system size and power rating.Inspiring simulations have been carried out through MATLAB/SIMULINK to validate the feasibility and competency of the proposed fault ride-through method and efficiency of the entire control system.
文摘A novel three-phase active power filter (APF) circuit with photovoltaic (PV) system to improve the quality of service and to reduce the capacity of energy storage capacitor is presented. The energy balance concept and sampling technique were used to simplify the calculation algorithm for the required utility source current and to control the voltage of the energy storage capacitor. The feasibility was verified by using the Pspice simulations and experiments. When the APF mode was used during non-operational period, not only the utilization rate, power factor and power quality could be improved, but also the capacity of energy storage capacitor could sparing. As the results, the advantages of the APF circuit are simplicity of control circuits, low cost, and good transient response.
文摘In l,ebanon, hybrid wind/PV systems are used to provide electricity when the public electricity is cut off This paper treats the storage problems of electrical energy generated by the used renewable sources. A theoretical study on two types of electrical energy storage systems is given. These systems are the electrochemical energy storage devices (batteries) and the potential (or hydraulic) energy storage system. In order to find the limiting case of use between these two energy storage systems, economical study and comparison between them are discussed and analyzed.
基金Supported by the Fundamental Research Funds for the Central Universities under Grants Nos. HEUCF101706 and HEUCF111705
文摘A novel flywheel energy storage (FES) motor/generator (M/G) was proposed for marine systems. The purpose was to improve the power quality of a marine power system (MPS) and strengthen the energy recycle. Two structures including the magnetic or non-magnetic inner-rotor were contrasted in the magnetostatic field by using finite element analysis (FEA). By optimally designing the size parameters, the average speed of FEA results of was 17 200 r/m, and the current was controlled between 62 and 68 A in the transient field. The electrical machine electromagnetism design was further optimized by the FEA in the temperature field, to find the local overheating point under the normal operation condition and provide guidance for the cooling system. Finally, it can be concluded from the comprehensive physical field analysis that the novel redundant structure M/G can improve the efficiency of the M/G and maintain the stability of the MPS.
文摘A hydrogen production and conversion plant from wind power was installed in the Sotavento wind farm by Gas Natural and the Galician Government. This facility is the highest electrolysis power installed at the European level. It consists of an electrolyser of 300 kW, a piston compressor, a 1,725 Nm3 H2 storage system and an engine of 55 kW. This pilot plant is being operated by Natural Gas in order to extrapolate its behavior to that of an industrial facility capable of managing all the production of Sotavento wind farm following different strategies: balancing, peak-shaving and repowering. In this paper, preliminary results at the facility are presented. The aim of these first tests has been to describe the operation of equipment under operating conditions required in the management of wind power production, in order to understand the behavior of the different equipment and try to make them suitable for this type of applications. This paper shows the difficulty of operating these systems under the wind power requirements.
文摘Botswana currently depends on electricity generated from coal-based power plant or electricity supplied from the border in South Africa. The country has good reserves of coal and the solar radiation is sufficiently high to make solar thermal attractive for generating electricity. The paper presents two conceptual coal-fired power station designs in which a solar sub-system augments heat to the feed heaters or to the boiler. The thermal and economic analyses showed enhanced system performance which indicates that solar power could be embedded into existing fossil fuel plants or new power stations. Integrating solar energy with existing or new fossil fuel based power plants could reduce the cost of stand-alone solar thermal power stations, reduce CO2 emissions and produce experience necessary to operate a full scale solar thermal electricity generation facility.
文摘Due to the environmental impact of energy usage and increased price of fusel fuel, consumers need to be encouraged to use renewable energy sources. The IHICSSWHS (indirect heating integrated collector storage solar water heater system) is one of the most economical systems. It incorporates the collection of a solar energy component and a hot water storage component in one unit. The objective of this study was to investigate ways to enhance the thermal performance of the system. Two configurations of the system were studied: system with double row HX (heat exchanger) and tube length of 16.2 m, and system with single row HX and tube length of 8.1 m and 10.8 m. The service water tube inside diameter was also varied to 10.7 mm and 17.1 mm The steady state continuity, momentum and energy equations were numerically solved, using FLUENT software. A standard k-w turbulent model and surface-to-surface radiation model were used. The result showed that the system of 10.8 m tube length and single row HX provided higher outlet temperature than the system of 16.2 m and double row HX. Therefore, a significant reduction in cost and power usage can be achieved by using a single row HX.
文摘This paper deals with control method related to a wind system operating in stand-alone applications. The stand-alone wind system is composed of three energy transfer subsystems: wind generator subsystem (wind turbine and electrical generator), energy storage subsystem, respectively, specific local network subsystem (controlled loads). This wind power system performs in the same time the maximization of wind energy conversion and the power balance between produced and required power. Three structures of the energy storage subsystem, based on buffer battery operation and/or capacitor voltage control, are discussed. The simulation results show that the proposed stand-alone wind power system ensures a good management of the local energy request. The design of the structures is analyzed in Matlab/Simulink environment, using PowerSim toolbox.
文摘The design and construction of an experimental solar hybrid vehicle based on the combination of photovoltaic solar energy as the main source of electricity and electric power supplied by a generator activated by the driver's pedaling is introduced. The vehicle has a battery to store the energy provided by both systems. The development was motivated by a Latin American solar car race through the Atacama Desert in Chile and the initiative to promote the use of clean energy for transport. A general description of the vehicle, its energetic aspects and experimental results are presented.