In order to achieve the acoustic signal distributed acquisition of stored grain pests, a novel acoustic signal acquisition system was presented based on the wireless sensor networks. And the system architecture, hardw...In order to achieve the acoustic signal distributed acquisition of stored grain pests, a novel acoustic signal acquisition system was presented based on the wireless sensor networks. And the system architecture, hardware configuration, and software were introduced in detail. Considering bandwidth limitation of wireless sensor networks, random sampling algorithm based on the compressed sensing theory was proposed. The developed acoustic signal acquisition system was applied in sampling the crawl acoustic signal of Tribolinm castaneum Herbst adults in granary. Preliminary experimentation indicated the rationality and practicability of the developed system and the proposed algorithm. They can implement the remote, real-time, and reliable wireless transmission for the acoustic signal sampled data of multiple points stored grain pests effectively.展开更多
Prostephanus truncatus (Horn) is a notorious stored grain insect pest established in Tanzania in late 1970s and currently threatening the maize industry of Zimbabwe. The devastating effects of the pest attack, deman...Prostephanus truncatus (Horn) is a notorious stored grain insect pest established in Tanzania in late 1970s and currently threatening the maize industry of Zimbabwe. The devastating effects of the pest attack, demands adequate preparation including identification of the potential invasion areas for more focused planning towards its effective management. In the current study, the potential P. truncatus invasion areas in Zimbabwe were identified based on climatic data with reference to the Tanzania situation using the geographical information system (GIS) Almanac Characterization Tool (AWhere-ACT 3.5 software). Areas identified to be at greatest risk of invasion includes the northern part of the country, the southern-east region and a few areas in the east (Manicaland province). Alternative host plants for P. truncatus similar to those identified in Kenya, where the pest is already endemic, were found to occur throughout Zimbabwe which could support initial colonization and subsequent perpetuation of the pest in the country. In Zimbabwe, chances that P. truncatus may spread throughout the country, should it invade the country, are high because of unregulated grain trade and the fact that most of the potential invasion areas identified in this study, are located in the major maize producing areas. Measures to delay the occurrence of the pest in Zimbabwe should focus on the high-risk areas identified.展开更多
文摘In order to achieve the acoustic signal distributed acquisition of stored grain pests, a novel acoustic signal acquisition system was presented based on the wireless sensor networks. And the system architecture, hardware configuration, and software were introduced in detail. Considering bandwidth limitation of wireless sensor networks, random sampling algorithm based on the compressed sensing theory was proposed. The developed acoustic signal acquisition system was applied in sampling the crawl acoustic signal of Tribolinm castaneum Herbst adults in granary. Preliminary experimentation indicated the rationality and practicability of the developed system and the proposed algorithm. They can implement the remote, real-time, and reliable wireless transmission for the acoustic signal sampled data of multiple points stored grain pests effectively.
文摘Prostephanus truncatus (Horn) is a notorious stored grain insect pest established in Tanzania in late 1970s and currently threatening the maize industry of Zimbabwe. The devastating effects of the pest attack, demands adequate preparation including identification of the potential invasion areas for more focused planning towards its effective management. In the current study, the potential P. truncatus invasion areas in Zimbabwe were identified based on climatic data with reference to the Tanzania situation using the geographical information system (GIS) Almanac Characterization Tool (AWhere-ACT 3.5 software). Areas identified to be at greatest risk of invasion includes the northern part of the country, the southern-east region and a few areas in the east (Manicaland province). Alternative host plants for P. truncatus similar to those identified in Kenya, where the pest is already endemic, were found to occur throughout Zimbabwe which could support initial colonization and subsequent perpetuation of the pest in the country. In Zimbabwe, chances that P. truncatus may spread throughout the country, should it invade the country, are high because of unregulated grain trade and the fact that most of the potential invasion areas identified in this study, are located in the major maize producing areas. Measures to delay the occurrence of the pest in Zimbabwe should focus on the high-risk areas identified.