Molybdenum disulfide(MoS2)was loaded on biocarbon using waste camellia dregs(CDs)as the carbon source,which was further coated with dopamine hydrochloride to construct biocarbon/MoS2 electrode composites.The electroch...Molybdenum disulfide(MoS2)was loaded on biocarbon using waste camellia dregs(CDs)as the carbon source,which was further coated with dopamine hydrochloride to construct biocarbon/MoS2 electrode composites.The electrochemical lithium storage performance of the composites with different MoS2 contents was investigated.SEM results demonstrated that the composite had a three-dimensional foam-like structure with MoS2 as the interlayer.XRD and HRTEM tests revealed that MoS2 interlayer spacing in the composite was expanded.XPS analysis showed that new Mo—N bonds were formed in the active material.The electrochemical tests showed that the composite with a MoS2 content of 63%had a high initial specific capacity of 1434 mA·h/g at a current density of 100 mA/g.After a long cycle at a high current,it also showed good cycling stability and the capacity retention was nearly 100%.In addition,it had good lithium ion deintercalation ability in the electrochemical kinetics test.展开更多
With the proliferation of energy storage and power applications, electric vehicles particularly, solid-state batteries are considered as one of the most promising strategies to address the ever-increasing safety conce...With the proliferation of energy storage and power applications, electric vehicles particularly, solid-state batteries are considered as one of the most promising strategies to address the ever-increasing safety concern and high energy demand of power devices. Here, we demonstrate the Al4B2O9 nanorods-modified poly(ethylene oxide) (PEO)-based solid polymer electrolyte (ASPE) with high ionic conductivity, wide electrochemical window, decent mechanical property and nonflammable performance. Specifically, because of the longer-range ordered Li+ transfer channels conducted by the interaction between Al4B2O9 nanorods and PEO, the optimal ASPE (ASPE-1) shows excellent ionic conductivity of 4.35×10^−1 and 3.1×10^−1 S cm^−1 at 30 and 60℃, respectively. It also has good electrochemical stability at 60℃ with a decomposition voltage of 5.1 V. Besides, the assembled LiFePO4//Li cells show good cycling performance, delivering 155 mA h g−1 after 300 cycles at 1 C under 60℃, and present excellent low temperature adaptability, retaining over 125 mA h g^−1 after 90 cycles at 0.2 C under 30℃. These results verify that the addition of Al4B2O9 nanorods can effectively promote the integrated performance of solid polymer electrolyte.展开更多
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(50702020,81171461)the Natural Science Foundation of Hunan Province,China(2017JJ2040)the Young Teacher Promotion Fund by Hunan University,China,the Fundamental Research Funds of the Central Universities,China.
文摘Molybdenum disulfide(MoS2)was loaded on biocarbon using waste camellia dregs(CDs)as the carbon source,which was further coated with dopamine hydrochloride to construct biocarbon/MoS2 electrode composites.The electrochemical lithium storage performance of the composites with different MoS2 contents was investigated.SEM results demonstrated that the composite had a three-dimensional foam-like structure with MoS2 as the interlayer.XRD and HRTEM tests revealed that MoS2 interlayer spacing in the composite was expanded.XPS analysis showed that new Mo—N bonds were formed in the active material.The electrochemical tests showed that the composite with a MoS2 content of 63%had a high initial specific capacity of 1434 mA·h/g at a current density of 100 mA/g.After a long cycle at a high current,it also showed good cycling stability and the capacity retention was nearly 100%.In addition,it had good lithium ion deintercalation ability in the electrochemical kinetics test.
基金financially supported by the National Natural Science Foundation of China (51804344)the Huxiang Youth Talent Support Program (2019RS2002)+2 种基金the Innovation and Entrepreneurship Project of Hunan Province,China (2018GK5026)the Innovation-Driven Project of Central South University (2020CX027)Guangdong Yang Fan Plan for Postdoctor Program
文摘With the proliferation of energy storage and power applications, electric vehicles particularly, solid-state batteries are considered as one of the most promising strategies to address the ever-increasing safety concern and high energy demand of power devices. Here, we demonstrate the Al4B2O9 nanorods-modified poly(ethylene oxide) (PEO)-based solid polymer electrolyte (ASPE) with high ionic conductivity, wide electrochemical window, decent mechanical property and nonflammable performance. Specifically, because of the longer-range ordered Li+ transfer channels conducted by the interaction between Al4B2O9 nanorods and PEO, the optimal ASPE (ASPE-1) shows excellent ionic conductivity of 4.35×10^−1 and 3.1×10^−1 S cm^−1 at 30 and 60℃, respectively. It also has good electrochemical stability at 60℃ with a decomposition voltage of 5.1 V. Besides, the assembled LiFePO4//Li cells show good cycling performance, delivering 155 mA h g−1 after 300 cycles at 1 C under 60℃, and present excellent low temperature adaptability, retaining over 125 mA h g^−1 after 90 cycles at 0.2 C under 30℃. These results verify that the addition of Al4B2O9 nanorods can effectively promote the integrated performance of solid polymer electrolyte.