As resource scarcity, extreme climate change, and pollution levels increase, economic growth must rely on more environmentally friendly and efficient production processes, Fuel cells are an ideal alternative to intern...As resource scarcity, extreme climate change, and pollution levels increase, economic growth must rely on more environmentally friendly and efficient production processes, Fuel cells are an ideal alternative to internal combustion (IC) engines and boilers on the path to greener industries because of their high effi- ciency and environmentally friendly operation, However, as a new energy technology, significant market penetration of fuel cells has not yet been achieved, In this paper, we perform a techno-economic and environmental analysis of fuel cell systems using life cycle and value chain activities, First, we investigate the procedure of fuel cell development and identify what activities should he undertaken according to fuel cell life cycle activities, value chain activities, and end-user acceptance criteria, Next, we present a unified learning of the institutional barriers in fuel cell commercialization, The primary end-user accep- tance criteria are function, cost, and reliability; a fuel cell should outperform these criteria compared with its competitors, such as IC engines and batteries, to achieve a competitive advantage, The repair and maintenance costs of fuel cells (due to low reliability) can lead to a substantial cost increase and decrease in availability, which are the major factors for end-user acceptance, The fuel cell industry must face the challenge of how to overcome this reliability barrier, This paper provides a deeper insight into our work over the years on the main barriers to fuel cell commercialization, and discusses the potential pivotal role of fuel cells in a future low-carbon green economy, It also identifies the needs and points out some direc- tions for this future low-carbon economy, Green energy, supplied with fuel cells, is truly the business mode of the future, Striving for a more sustainable development of economic growth by adopting green public investments and implementing policy initiatives encourages environmentally responsible indus- trial investments.展开更多
Distributed key value storage systems are among the most important types of distributed storage systems currently deployed in data centers. Nowadays, enterprise data centers are facing growing pressure in reducing the...Distributed key value storage systems are among the most important types of distributed storage systems currently deployed in data centers. Nowadays, enterprise data centers are facing growing pressure in reducing their power consumption. In this paper, we propose GreenCHT, a reliable power management scheme for consistent hashing based distributed key value storage systems. It consists of a multi-tier replication scheme, a reliable distributed log store, and a predictive power mode scheduler (PMS). Instead of randomly placing replicas of each object on a number of nodes in the consistent hash ring, we arrange the replicas of objects on nonoverlapping tiers of nodes in the ring. This allows the system to fall in various power modes by powering down subsets of servers while not violating data availability. The predictive PMS predicts workloads and adapts to load fluctuation. It cooperates with the multi-tier replication strategy to provide power proportionality for the system. To ensure that the reliability of the system is maintained when replicas are powered down, we distribute the writes to standby replicas to active servers, which ensures failure tolerance of the system. GreenCHT is implemented based on Sheepdog, a distributed key value storage system that uses consistent hashing as an underlying distributed hash table. By replaying 12 typical real workload traces collected from Microsoft, the evaluation results show that GreenCHT can provide significant power savings while maintaining a desired performance. We observe that GreenCHT can reduce power consumption by up to 35%-61%.展开更多
In modern energy-saving replication storage systems, a primary group of disks is always powered up to serve incoming requests while other disks are often spun down to save energy during slack periods. However, since n...In modern energy-saving replication storage systems, a primary group of disks is always powered up to serve incoming requests while other disks are often spun down to save energy during slack periods. However, since new writes cannot be immediately synchronized into all disks, system reliability is degraded. In this paper, we develop a high-reliability and energy-efficient replication storage system, named RERAID, based on RAID10. RERAID employs part of the free space in the primary disk group and uses erasure coding to construct a code cache at the front end to absorb new writes. Since code cache supports failure recovery of two or more disks by using erasure coding, RERAID guarantees a reliability comparable with that of the RAID10 storage system. In addition, we develop an algorithm, called erasure coding write (ECW), to buffer many small random writes into a few large writes, which are then written to the code cache in a parallel fashion sequentially to improve the write performance. Experimental results show that RERAID significantly improves write performance and saves more energy than existing solutions.展开更多
基金the Ministry of Economic Development and Trade of Government of Alberta for the Campus Alberta Innovation Program (CAIP) Research Chair (RCP-12-001BCAIP)
文摘As resource scarcity, extreme climate change, and pollution levels increase, economic growth must rely on more environmentally friendly and efficient production processes, Fuel cells are an ideal alternative to internal combustion (IC) engines and boilers on the path to greener industries because of their high effi- ciency and environmentally friendly operation, However, as a new energy technology, significant market penetration of fuel cells has not yet been achieved, In this paper, we perform a techno-economic and environmental analysis of fuel cell systems using life cycle and value chain activities, First, we investigate the procedure of fuel cell development and identify what activities should he undertaken according to fuel cell life cycle activities, value chain activities, and end-user acceptance criteria, Next, we present a unified learning of the institutional barriers in fuel cell commercialization, The primary end-user accep- tance criteria are function, cost, and reliability; a fuel cell should outperform these criteria compared with its competitors, such as IC engines and batteries, to achieve a competitive advantage, The repair and maintenance costs of fuel cells (due to low reliability) can lead to a substantial cost increase and decrease in availability, which are the major factors for end-user acceptance, The fuel cell industry must face the challenge of how to overcome this reliability barrier, This paper provides a deeper insight into our work over the years on the main barriers to fuel cell commercialization, and discusses the potential pivotal role of fuel cells in a future low-carbon green economy, It also identifies the needs and points out some direc- tions for this future low-carbon economy, Green energy, supplied with fuel cells, is truly the business mode of the future, Striving for a more sustainable development of economic growth by adopting green public investments and implementing policy initiatives encourages environmentally responsible indus- trial investments.
文摘Distributed key value storage systems are among the most important types of distributed storage systems currently deployed in data centers. Nowadays, enterprise data centers are facing growing pressure in reducing their power consumption. In this paper, we propose GreenCHT, a reliable power management scheme for consistent hashing based distributed key value storage systems. It consists of a multi-tier replication scheme, a reliable distributed log store, and a predictive power mode scheduler (PMS). Instead of randomly placing replicas of each object on a number of nodes in the consistent hash ring, we arrange the replicas of objects on nonoverlapping tiers of nodes in the ring. This allows the system to fall in various power modes by powering down subsets of servers while not violating data availability. The predictive PMS predicts workloads and adapts to load fluctuation. It cooperates with the multi-tier replication strategy to provide power proportionality for the system. To ensure that the reliability of the system is maintained when replicas are powered down, we distribute the writes to standby replicas to active servers, which ensures failure tolerance of the system. GreenCHT is implemented based on Sheepdog, a distributed key value storage system that uses consistent hashing as an underlying distributed hash table. By replaying 12 typical real workload traces collected from Microsoft, the evaluation results show that GreenCHT can provide significant power savings while maintaining a desired performance. We observe that GreenCHT can reduce power consumption by up to 35%-61%.
基金Project supported by the National Natural Science Foundation of China (Nos. 61472152, 614320{37, 61572209, and 61300047), the Fundamental Research Funds for the Central Universities, China (No. 2015QN069), the Director Fund of Wuhan National Laboratory for Optoelectronics (WNLO), and the MOE Key Laboratory of Data Storage System, China
文摘In modern energy-saving replication storage systems, a primary group of disks is always powered up to serve incoming requests while other disks are often spun down to save energy during slack periods. However, since new writes cannot be immediately synchronized into all disks, system reliability is degraded. In this paper, we develop a high-reliability and energy-efficient replication storage system, named RERAID, based on RAID10. RERAID employs part of the free space in the primary disk group and uses erasure coding to construct a code cache at the front end to absorb new writes. Since code cache supports failure recovery of two or more disks by using erasure coding, RERAID guarantees a reliability comparable with that of the RAID10 storage system. In addition, we develop an algorithm, called erasure coding write (ECW), to buffer many small random writes into a few large writes, which are then written to the code cache in a parallel fashion sequentially to improve the write performance. Experimental results show that RERAID significantly improves write performance and saves more energy than existing solutions.