The integration and accommodation of the wind and solar energy pose great challenges on today’s power system operation due to the intermittent nature and volatility of the wind and solar resources.High efficient larg...The integration and accommodation of the wind and solar energy pose great challenges on today’s power system operation due to the intermittent nature and volatility of the wind and solar resources.High efficient large-scale electrical energy storage is one of the most effective and economical solutions to those problems.After the comprehensive review of the existing storage technologies,this paper proposes an overall design scheme for the Non-supplementary Fired Compressed Air Energy Storage(NFCAES)system,including system design,modeling and efficiency assessment,as well as protection and control.Especially,the design principles of the multistage regenerative,i.e.heat recovery system which is used to fully recycle and utilize the waste heat from compression are provided,so as the overall system efficiency evaluation method.This paper theoretically ascertains the storage decoupling rules in the potential and internal energy of molecular compressed air and reveals the conversion mechanism of gas,heat,power,electricity and other forms of energy.On this basis,a 500-k W physical simulation system of CAES system(TICC-500,Tsinghua-IPCCAS-CEPRI-CAES)is built,which passed a system-wide 420-k W load power generation test with less pollution and zero carbon emissions.Besides,the multi-form energy conversion of multi-stage regenerative CAES and storage efficiency is verified,especially its incomparable superiority in solving the uncertainty problem in wind and solar power generation.Finally,the propaganda and application scenario of the CAES system in China is introduced.展开更多
The non-Markov process exists widely in thermodymanic process,while it usually requires the packing of many transistors and memories with great system complexity in a traditional device structure to minic such functio...The non-Markov process exists widely in thermodymanic process,while it usually requires the packing of many transistors and memories with great system complexity in a traditional device structure to minic such functions.Two-dimensional(2D)material-based resistive random access memory(RRAM)devices have the potential for next-generation computing systems with much-reduced complexity.Here,we achieve a non-Markov chain in an individual RRAM device based on 2D mineral material mica with a vertical metal/mica/metal structure.We find that the potassium ions(K+)in 2D mica gradually move in the direction of the applied electric field,making the initially insulating mica conductive.The accumulation of K+is changed by an electric field,and the 2D-mica RRAM has both single and double memory windows,a high on/off ratio,decent stability,and repeatability.This is the first time a non-Markov chain process has been established in a single RRAM,in which the movement of K+is dependent on the stimulated voltage as well as their past states.This work not only uncovers an intrinsic inner ionic conductivity of 2D mica,but also opens the door for the production of such RRAM devices with numerous functions and applications.展开更多
基金Science and Technology Fund of SGCC(Grant No.KJ-2012-627)The National Natural Science Foundation of China(Grant No.51321005)
文摘The integration and accommodation of the wind and solar energy pose great challenges on today’s power system operation due to the intermittent nature and volatility of the wind and solar resources.High efficient large-scale electrical energy storage is one of the most effective and economical solutions to those problems.After the comprehensive review of the existing storage technologies,this paper proposes an overall design scheme for the Non-supplementary Fired Compressed Air Energy Storage(NFCAES)system,including system design,modeling and efficiency assessment,as well as protection and control.Especially,the design principles of the multistage regenerative,i.e.heat recovery system which is used to fully recycle and utilize the waste heat from compression are provided,so as the overall system efficiency evaluation method.This paper theoretically ascertains the storage decoupling rules in the potential and internal energy of molecular compressed air and reveals the conversion mechanism of gas,heat,power,electricity and other forms of energy.On this basis,a 500-k W physical simulation system of CAES system(TICC-500,Tsinghua-IPCCAS-CEPRI-CAES)is built,which passed a system-wide 420-k W load power generation test with less pollution and zero carbon emissions.Besides,the multi-form energy conversion of multi-stage regenerative CAES and storage efficiency is verified,especially its incomparable superiority in solving the uncertainty problem in wind and solar power generation.Finally,the propaganda and application scenario of the CAES system in China is introduced.
基金This work was supported by the National Natural Science Foundation of China(51920105002,51991340,51722206,and 51991343)Guangdong Innovative and Entrepreneurial Research Team Program(2017ZT07C341)+1 种基金the Bureau of Industry and Information Technology of Shenzhen for the“2017 Graphene Manufacturing Innovation Center Project”(201901171523)the Shenzhen Basic Research Program(JCYJ20200109144620815 and JCYJ20200109144616617).
文摘The non-Markov process exists widely in thermodymanic process,while it usually requires the packing of many transistors and memories with great system complexity in a traditional device structure to minic such functions.Two-dimensional(2D)material-based resistive random access memory(RRAM)devices have the potential for next-generation computing systems with much-reduced complexity.Here,we achieve a non-Markov chain in an individual RRAM device based on 2D mineral material mica with a vertical metal/mica/metal structure.We find that the potassium ions(K+)in 2D mica gradually move in the direction of the applied electric field,making the initially insulating mica conductive.The accumulation of K+is changed by an electric field,and the 2D-mica RRAM has both single and double memory windows,a high on/off ratio,decent stability,and repeatability.This is the first time a non-Markov chain process has been established in a single RRAM,in which the movement of K+is dependent on the stimulated voltage as well as their past states.This work not only uncovers an intrinsic inner ionic conductivity of 2D mica,but also opens the door for the production of such RRAM devices with numerous functions and applications.