Carbonate electrolytes are one of the most desirable electrolytes for high-energy lithium-sulfur batteries(LSBs)because of their successful implementation in commercial Li-ion batteries.The low-polysulfide-solubility ...Carbonate electrolytes are one of the most desirable electrolytes for high-energy lithium-sulfur batteries(LSBs)because of their successful implementation in commercial Li-ion batteries.The low-polysulfide-solubility feature of some carbonate solvents also makes them very promising for overcoming the shuttle effects of LSBs.However,regular sulfur electrodes experience undesired electrochemical mechanisms in carbonate electrolytes due to side reactions.In this study,we report a catalytic redox mechanism of sulfur in propylene carbonate(PC)electrolyte based on a compari-son study.The catalytic mechanism is characterized by the interactions between polysulfides and dual N/O functional groups on the host carbon,which largely prevents side reactions between pol-ysulfides and the carbonate electrolyte.Such a mechanism coupled with the low-polysulfide-solubility feature leads to stable cycling of LSBs in PC electrolyte.Favorable dual N/O functional groups are identified via a density functional theory study.This work provides an alternative route for enabling LSBs in carbonate electrolytes.展开更多
In order to review storage performance of the electric double layer capacitor (EDLC) in microgrid applications, charging time and storage efficiency issues are mainly studied aiming at three different charging modes...In order to review storage performance of the electric double layer capacitor (EDLC) in microgrid applications, charging time and storage efficiency issues are mainly studied aiming at three different charging modes, including the constant voltage charging mode (CVCM), the constant current charging mode (CCCM) and the constant power charging mode (CPCM), based on the practical EDLC product. Numerical calculation methods are presented for different charging modes, and the charging efficiency is also reviewed with strict mathematical deductions, which is validated to be accurate enough and applicable through a simple case with the PV/EDLC system illustration. Finally, trade-off problems between charging time and energy loss are also studied. Research results show that the CPCM is more suitable for microgrid networks compared with the traditional constant-voltage and constant-current charging modes. The hybrid charging method is recommended to save energy and keep high efficiency relatively at the same time. However, how to manage the combination percentage of different charging modes in a reasonable way should be dealt with according to the practical requirements.展开更多
We theoretically investigate the electricity storage/generation in a reversible solid oxide cell stack. The system heat is for the first time tentatively stored in a phase-change metal when the stack is operated to ge...We theoretically investigate the electricity storage/generation in a reversible solid oxide cell stack. The system heat is for the first time tentatively stored in a phase-change metal when the stack is operated to generate electricity in a fuel cell mode and then reused to store electricity in an electrolysis mode. The state of charge (H2 frication in cathode) effectively enhances the open circuit voltages (OCVs) while the system gas pressure in electrodes also increases the OCVs. On the other hand, a higher system pressure facilitates the species diffusion in electrodes that therefore accordingly improve electrode polarizations. With the aid of recycled system heat, the roundtrip efficiency reaches as high as 92% for the repeated electricity storage and generation.展开更多
La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were inves...La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were investigated. All alloys consist of a single LaNi5 phase with CaCu5 structure, and the lattice constant a and the cell volume (V) of the LaNi5 phase increase with increasing x value. The maximum discharge capacity gradually decreases from 319.0 mA?h/g (x=0) to 291.9 mA?h/g (x=0.20) with the increase in x value. The high-rate dischargeability at the discharge current density of 1200 mA/g decreases monotonically from 53.1% (x=0) to 44.2% (x=0.20). The cycling stability increases with increasing x from 0 to 0.20, which is mainly ascribed to the improvement of the pulverization resistance.展开更多
The LaMgNi4xCox (x=0, 0.3, 0.5) compounds were prepared by the method of levitation melting and a subsequent heat treatment at 1073 K for 10 h. XRD analysis shows that the obtained LaMgNia-xCox alloys consist of a s...The LaMgNi4xCox (x=0, 0.3, 0.5) compounds were prepared by the method of levitation melting and a subsequent heat treatment at 1073 K for 10 h. XRD analysis shows that the obtained LaMgNia-xCox alloys consist of a single phase with the structure of cubic SnMgCu4 (AuBe5 type). The hydrogen absorption/desorption properties of LaMgNi4 were investigated by PCI measurement at various temperatures (T=373, 398, 423 K) and the results show that the maximum absorbed hydrogen capacity reaches 1.45% (5.79H/M) under a hydrogen pressure of 4.3 MPa at 373 K. The XRD patterns during absorbing procedure at 373 K indicate the phase structure changing from cubic (a-LaMgNi4) to orthorhombic (fl-LaMgNiaH3.41) and after hydrogenation finally back to cubic (y-LaMgNiaH4.87), and a partial desorption was also observed under this condition. With increasing temperature, a slight decrease of the absorbed hydrogen content was observed and the number of plateaus reduces from two to one, but the hydrogen absorption kinetics improves. The electrochemical properties of the LaMgNiaxCox were measured by simulated battery test, which shows that the discharge capacity of the alloys significantly improves with the increase of Co content.展开更多
文摘Carbonate electrolytes are one of the most desirable electrolytes for high-energy lithium-sulfur batteries(LSBs)because of their successful implementation in commercial Li-ion batteries.The low-polysulfide-solubility feature of some carbonate solvents also makes them very promising for overcoming the shuttle effects of LSBs.However,regular sulfur electrodes experience undesired electrochemical mechanisms in carbonate electrolytes due to side reactions.In this study,we report a catalytic redox mechanism of sulfur in propylene carbonate(PC)electrolyte based on a compari-son study.The catalytic mechanism is characterized by the interactions between polysulfides and dual N/O functional groups on the host carbon,which largely prevents side reactions between pol-ysulfides and the carbonate electrolyte.Such a mechanism coupled with the low-polysulfide-solubility feature leads to stable cycling of LSBs in PC electrolyte.Favorable dual N/O functional groups are identified via a density functional theory study.This work provides an alternative route for enabling LSBs in carbonate electrolytes.
基金The National Natural Science Foundation of China (No.50907010)Ph.D.Programs Foundation of Ministry of Education of China(No.20070286047)Scientific Innovation Foundation for Youngsters of CSEE
文摘In order to review storage performance of the electric double layer capacitor (EDLC) in microgrid applications, charging time and storage efficiency issues are mainly studied aiming at three different charging modes, including the constant voltage charging mode (CVCM), the constant current charging mode (CCCM) and the constant power charging mode (CPCM), based on the practical EDLC product. Numerical calculation methods are presented for different charging modes, and the charging efficiency is also reviewed with strict mathematical deductions, which is validated to be accurate enough and applicable through a simple case with the PV/EDLC system illustration. Finally, trade-off problems between charging time and energy loss are also studied. Research results show that the CPCM is more suitable for microgrid networks compared with the traditional constant-voltage and constant-current charging modes. The hybrid charging method is recommended to save energy and keep high efficiency relatively at the same time. However, how to manage the combination percentage of different charging modes in a reasonable way should be dealt with according to the practical requirements.
文摘We theoretically investigate the electricity storage/generation in a reversible solid oxide cell stack. The system heat is for the first time tentatively stored in a phase-change metal when the stack is operated to generate electricity in a fuel cell mode and then reused to store electricity in an electrolysis mode. The state of charge (H2 frication in cathode) effectively enhances the open circuit voltages (OCVs) while the system gas pressure in electrodes also increases the OCVs. On the other hand, a higher system pressure facilitates the species diffusion in electrodes that therefore accordingly improve electrode polarizations. With the aid of recycled system heat, the roundtrip efficiency reaches as high as 92% for the repeated electricity storage and generation.
基金Project (51001043) supported by the National Natural Science Foundation of ChinaProject (NCET2011) supported by Program for New Century Excellent Talents in University, China+4 种基金Project (201104390) supported by China Postdoctoral Science Special FoundationProject (20100470990) supported by China Postdoctoral Science FoundationProject (2012IRTSTHN007) supported by Program for Innovative Research Team (in Science and Technology) in the University of Henan Province, ChinaProject (2011J1003) supported by Baotou Science and Technology Project, ChinaProject (B2010-13) supported by the Doctoral Foundation of Henan Polytechnic University, China
文摘La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were investigated. All alloys consist of a single LaNi5 phase with CaCu5 structure, and the lattice constant a and the cell volume (V) of the LaNi5 phase increase with increasing x value. The maximum discharge capacity gradually decreases from 319.0 mA?h/g (x=0) to 291.9 mA?h/g (x=0.20) with the increase in x value. The high-rate dischargeability at the discharge current density of 1200 mA/g decreases monotonically from 53.1% (x=0) to 44.2% (x=0.20). The cycling stability increases with increasing x from 0 to 0.20, which is mainly ascribed to the improvement of the pulverization resistance.
基金Projects(10JC407700,11ZR1417600) supported by the Science and Technology Committee of Shanghai,ChinaProject(12ZZ017) supported by the Shanghai Education Commission,China
文摘The LaMgNi4xCox (x=0, 0.3, 0.5) compounds were prepared by the method of levitation melting and a subsequent heat treatment at 1073 K for 10 h. XRD analysis shows that the obtained LaMgNia-xCox alloys consist of a single phase with the structure of cubic SnMgCu4 (AuBe5 type). The hydrogen absorption/desorption properties of LaMgNi4 were investigated by PCI measurement at various temperatures (T=373, 398, 423 K) and the results show that the maximum absorbed hydrogen capacity reaches 1.45% (5.79H/M) under a hydrogen pressure of 4.3 MPa at 373 K. The XRD patterns during absorbing procedure at 373 K indicate the phase structure changing from cubic (a-LaMgNi4) to orthorhombic (fl-LaMgNiaH3.41) and after hydrogenation finally back to cubic (y-LaMgNiaH4.87), and a partial desorption was also observed under this condition. With increasing temperature, a slight decrease of the absorbed hydrogen content was observed and the number of plateaus reduces from two to one, but the hydrogen absorption kinetics improves. The electrochemical properties of the LaMgNiaxCox were measured by simulated battery test, which shows that the discharge capacity of the alloys significantly improves with the increase of Co content.