期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
层状结构对储能电子器件倍率性能的分析
1
作者 刘克桓 杨文伟 +1 位作者 石丽雯 郭蕾 《机械设计》 CSCD 北大核心 2024年第S02期101-104,共4页
以锂离子电池和钠离子电池为代表的储能电子器件是近年来的研究热点。二维层状结构由于其独特的性能在储能电子器件中表现出巨大的储能潜力。文中以过渡金属氧化物、二硫化钼和MXenes为代表介绍了二维层状结构作为负极材料对倍率性能的... 以锂离子电池和钠离子电池为代表的储能电子器件是近年来的研究热点。二维层状结构由于其独特的性能在储能电子器件中表现出巨大的储能潜力。文中以过渡金属氧化物、二硫化钼和MXenes为代表介绍了二维层状结构作为负极材料对倍率性能的影响,并指出进一步的研究方向。 展开更多
关键词 层状结构 储能电子器件 倍率性能
下载PDF
Recent advancements in metal organic framework based electrodes for supercapacitors 被引量:9
2
作者 赵昱颉 刘金章 +3 位作者 Michael Horn Nunzio Motta 胡明俊 李岩 《Science China Materials》 SCIE EI CSCD 2018年第2期159-184,共26页
Metal organic frameworks(MOFs) are considered as very promising candidates to build electrodes for electrochemical energy storage devices such as lithium ion batteries, fuel cells and supercapacitors, due to their d... Metal organic frameworks(MOFs) are considered as very promising candidates to build electrodes for electrochemical energy storage devices such as lithium ion batteries, fuel cells and supercapacitors, due to their diverse structure, adjustable aperture, large specific surface area and abundant active sites. Supercapacitor has been widely investigated in the past decades. Of critical importance in these devices is the electrode active materials, and this application has been intensively studied with the development of novel nanomaterials. In this review we summarize recent reports on MO Fs as electrode materials for super capacitors. Specifically,the synthesis of MOF materials for super capacitor electrodes and their performance in electrochemical energy storage are discussed. We aim to include supercapacitor electrode materials related to MOFs, such as carbon, metal and composite materials. It is proposed that MOFs play an important role in the development of a new generation of supercapacitor electrode materials. Finally, we discuss the current challenges in the field of supercapacitors, with a view towards how to address these challenges with the future development of MOFs and their derivatives. 展开更多
关键词 metal organic frameworks (MOFs) ELECTROCHEMISTRY SUPERCAPACITORS ELECTRODE DERIVATIVE
原文传递
Enhancing sodium-ion storage performance of MoO/N-doped carbon through interfacial Mo–N–C bond 被引量:1
3
作者 Bin Huang Shuang Liu +7 位作者 Xu Zhao Yanwei Li Jianwen Yang Quanqi Chen Shunhua Xiao Wenhua Zhang Hong-En Wang Guozhong Cao 《Science China Materials》 SCIE EI CSCD 2021年第1期85-95,共11页
Na-ion batteries(SIBs)have attracted considerable attention as promising alternatives to commercial Li-ion batteries(LIBs)due to comparable redox potential,and natural abundance of Na.However,it remains challenging to... Na-ion batteries(SIBs)have attracted considerable attention as promising alternatives to commercial Li-ion batteries(LIBs)due to comparable redox potential,and natural abundance of Na.However,it remains challenging to explore suitable anodes for SIBs.Herein,a MoO2/N-doped carbon(MoO2/N-C)composite composed of MoO2 nanocrystals embedded within carbon matrix with a Mo–N–C chemical bond is prepared by a simple yet effective carbonization-induced topochemical transformation route.Na-ion half-cells using MoO2/N-C exhibit excellent cycling stability over 5000 cycles at 5 A g^-1 and superior rate capability.Physicochemical characterizations and first-principles density functional theory(DFT)simulations reveal that the formation of chemical bond at the interface between MoO2 and N-doped carbon plays an important role in the excellent charge storage properties of MoO2/N-C.More importantly,the interfacial coupling can efficiently promote interface charge transfer.Benefiting from this,Na-ion capacitors(SICs)constructed with the MoO2/N-C anode and activated carbon cathode can deliver an impressive energy density of 15 W h kg^-1 at a power density of 1760 W kg^-1,together with a capacitance retention of 92.4%over 1000 cycles at 10 A g^-1.The proposed strategy in this paper based on interfacial chemical bond may hold promises for the design of high-performance electrodes for energy storage devices. 展开更多
关键词 topochemical transformation Mo–N chemical bond Na-ion batteries Na-ion capacitor density functional theory simulations
原文传递
In situ construction of heterostructured bimetallic sulfide/phosphide with rich interfaces for high-performance aqueous Zn-ion batteries 被引量:2
4
作者 Fang Yang Yuenian Shen +5 位作者 Ze Cen Jie Wan Shijie Li Guanjie He Junqing Hu Kaibing Xu 《Science China Materials》 SCIE EI CAS CSCD 2022年第2期356-363,共8页
It is still challenging to develop suitable cathode structures for high-rate and stable aqueous Zn-ion batteries.Herein,a phosphating-assisted interfacial engineering strategy is designed for the controllable conversi... It is still challenging to develop suitable cathode structures for high-rate and stable aqueous Zn-ion batteries.Herein,a phosphating-assisted interfacial engineering strategy is designed for the controllable conversion of NiCo_(2)S_(4) nanosheets into heterostructured NiCoP/NiCo_(2)S_(4) as the cathodes in aqueous Zn-ion batteries.The multicomponent heterostructures with rich interfaces can not only improve the electrical conductivity but also enhance the diffusion pathways for Zn-ion storage.As expected,the NiCoP/NiCo_(2)S_(4) electrode has high performance with a large specific capacity of 251.1 mA h g^(−1) at a high current density of 10 A g^(−1) and excellent rate capability(retaining about 76%even at 50 A g^(−1)).Accordingly,the Zn-ion battery using NiCoP/NiCo_(2)S_(4) as the cathode delivers a high specific capacity(265.1 mA h g^(−1) at 5 A g^(−1)),a long-term cycling stability(96.9%retention after 5000 cycles),and a competitive energy density(444.7W h kg^(−1) at the power density of 8.4 kW kg^(−1)).This work therefore provides a simple phosphating-assisted interfacial engineering strategy to construct heterostructured electrode materials with rich interfaces for the development of high-performance energy storage devices in the future. 展开更多
关键词 PHOSPHATING HETEROSTRUCTURE NiCoP/NiCo2S4 Znion batteries high capacity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部