Metal organic frameworks(MOFs) are considered as very promising candidates to build electrodes for electrochemical energy storage devices such as lithium ion batteries, fuel cells and supercapacitors, due to their d...Metal organic frameworks(MOFs) are considered as very promising candidates to build electrodes for electrochemical energy storage devices such as lithium ion batteries, fuel cells and supercapacitors, due to their diverse structure, adjustable aperture, large specific surface area and abundant active sites. Supercapacitor has been widely investigated in the past decades. Of critical importance in these devices is the electrode active materials, and this application has been intensively studied with the development of novel nanomaterials. In this review we summarize recent reports on MO Fs as electrode materials for super capacitors. Specifically,the synthesis of MOF materials for super capacitor electrodes and their performance in electrochemical energy storage are discussed. We aim to include supercapacitor electrode materials related to MOFs, such as carbon, metal and composite materials. It is proposed that MOFs play an important role in the development of a new generation of supercapacitor electrode materials. Finally, we discuss the current challenges in the field of supercapacitors, with a view towards how to address these challenges with the future development of MOFs and their derivatives.展开更多
Na-ion batteries(SIBs)have attracted considerable attention as promising alternatives to commercial Li-ion batteries(LIBs)due to comparable redox potential,and natural abundance of Na.However,it remains challenging to...Na-ion batteries(SIBs)have attracted considerable attention as promising alternatives to commercial Li-ion batteries(LIBs)due to comparable redox potential,and natural abundance of Na.However,it remains challenging to explore suitable anodes for SIBs.Herein,a MoO2/N-doped carbon(MoO2/N-C)composite composed of MoO2 nanocrystals embedded within carbon matrix with a Mo–N–C chemical bond is prepared by a simple yet effective carbonization-induced topochemical transformation route.Na-ion half-cells using MoO2/N-C exhibit excellent cycling stability over 5000 cycles at 5 A g^-1 and superior rate capability.Physicochemical characterizations and first-principles density functional theory(DFT)simulations reveal that the formation of chemical bond at the interface between MoO2 and N-doped carbon plays an important role in the excellent charge storage properties of MoO2/N-C.More importantly,the interfacial coupling can efficiently promote interface charge transfer.Benefiting from this,Na-ion capacitors(SICs)constructed with the MoO2/N-C anode and activated carbon cathode can deliver an impressive energy density of 15 W h kg^-1 at a power density of 1760 W kg^-1,together with a capacitance retention of 92.4%over 1000 cycles at 10 A g^-1.The proposed strategy in this paper based on interfacial chemical bond may hold promises for the design of high-performance electrodes for energy storage devices.展开更多
It is still challenging to develop suitable cathode structures for high-rate and stable aqueous Zn-ion batteries.Herein,a phosphating-assisted interfacial engineering strategy is designed for the controllable conversi...It is still challenging to develop suitable cathode structures for high-rate and stable aqueous Zn-ion batteries.Herein,a phosphating-assisted interfacial engineering strategy is designed for the controllable conversion of NiCo_(2)S_(4) nanosheets into heterostructured NiCoP/NiCo_(2)S_(4) as the cathodes in aqueous Zn-ion batteries.The multicomponent heterostructures with rich interfaces can not only improve the electrical conductivity but also enhance the diffusion pathways for Zn-ion storage.As expected,the NiCoP/NiCo_(2)S_(4) electrode has high performance with a large specific capacity of 251.1 mA h g^(−1) at a high current density of 10 A g^(−1) and excellent rate capability(retaining about 76%even at 50 A g^(−1)).Accordingly,the Zn-ion battery using NiCoP/NiCo_(2)S_(4) as the cathode delivers a high specific capacity(265.1 mA h g^(−1) at 5 A g^(−1)),a long-term cycling stability(96.9%retention after 5000 cycles),and a competitive energy density(444.7W h kg^(−1) at the power density of 8.4 kW kg^(−1)).This work therefore provides a simple phosphating-assisted interfacial engineering strategy to construct heterostructured electrode materials with rich interfaces for the development of high-performance energy storage devices in the future.展开更多
基金supported by the Fundamental Research Funds for Central Universities' through Beihang Universitythe Queensland Government through the Q-CAS Collaborative Science Fund 2016 "Graphene-Based Thin Film Supercapacitors"
文摘Metal organic frameworks(MOFs) are considered as very promising candidates to build electrodes for electrochemical energy storage devices such as lithium ion batteries, fuel cells and supercapacitors, due to their diverse structure, adjustable aperture, large specific surface area and abundant active sites. Supercapacitor has been widely investigated in the past decades. Of critical importance in these devices is the electrode active materials, and this application has been intensively studied with the development of novel nanomaterials. In this review we summarize recent reports on MO Fs as electrode materials for super capacitors. Specifically,the synthesis of MOF materials for super capacitor electrodes and their performance in electrochemical energy storage are discussed. We aim to include supercapacitor electrode materials related to MOFs, such as carbon, metal and composite materials. It is proposed that MOFs play an important role in the development of a new generation of supercapacitor electrode materials. Finally, we discuss the current challenges in the field of supercapacitors, with a view towards how to address these challenges with the future development of MOFs and their derivatives.
基金supported by the National Natural Science Foundation of China(51804089)the Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials(EMFM20181114)the support of the research starting foundation of CAEP(PY20200038)。
文摘Na-ion batteries(SIBs)have attracted considerable attention as promising alternatives to commercial Li-ion batteries(LIBs)due to comparable redox potential,and natural abundance of Na.However,it remains challenging to explore suitable anodes for SIBs.Herein,a MoO2/N-doped carbon(MoO2/N-C)composite composed of MoO2 nanocrystals embedded within carbon matrix with a Mo–N–C chemical bond is prepared by a simple yet effective carbonization-induced topochemical transformation route.Na-ion half-cells using MoO2/N-C exhibit excellent cycling stability over 5000 cycles at 5 A g^-1 and superior rate capability.Physicochemical characterizations and first-principles density functional theory(DFT)simulations reveal that the formation of chemical bond at the interface between MoO2 and N-doped carbon plays an important role in the excellent charge storage properties of MoO2/N-C.More importantly,the interfacial coupling can efficiently promote interface charge transfer.Benefiting from this,Na-ion capacitors(SICs)constructed with the MoO2/N-C anode and activated carbon cathode can deliver an impressive energy density of 15 W h kg^-1 at a power density of 1760 W kg^-1,together with a capacitance retention of 92.4%over 1000 cycles at 10 A g^-1.The proposed strategy in this paper based on interfacial chemical bond may hold promises for the design of high-performance electrodes for energy storage devices.
基金supported by the National Natural Science Foundation of China(51602049 and 51708504)China Postdoctoral Science Foundation(2017M610217 and 2018T110322)。
文摘It is still challenging to develop suitable cathode structures for high-rate and stable aqueous Zn-ion batteries.Herein,a phosphating-assisted interfacial engineering strategy is designed for the controllable conversion of NiCo_(2)S_(4) nanosheets into heterostructured NiCoP/NiCo_(2)S_(4) as the cathodes in aqueous Zn-ion batteries.The multicomponent heterostructures with rich interfaces can not only improve the electrical conductivity but also enhance the diffusion pathways for Zn-ion storage.As expected,the NiCoP/NiCo_(2)S_(4) electrode has high performance with a large specific capacity of 251.1 mA h g^(−1) at a high current density of 10 A g^(−1) and excellent rate capability(retaining about 76%even at 50 A g^(−1)).Accordingly,the Zn-ion battery using NiCoP/NiCo_(2)S_(4) as the cathode delivers a high specific capacity(265.1 mA h g^(−1) at 5 A g^(−1)),a long-term cycling stability(96.9%retention after 5000 cycles),and a competitive energy density(444.7W h kg^(−1) at the power density of 8.4 kW kg^(−1)).This work therefore provides a simple phosphating-assisted interfacial engineering strategy to construct heterostructured electrode materials with rich interfaces for the development of high-performance energy storage devices in the future.