For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a mult...For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a multi-objective optimization scheduling strategy considering energy storage participation is proposed.Firstly,the new energy power system model is established,and the PP scenario generation and reduction frame based on the autoregressive moving average model and Kantorovich-distance is proposed.Then,based on the optimization goal of the system operation cost minimization and the PP output power consumption maximization,the multi-objective optimization scheduling model is established.Finally,the simulation results show that introducing energy storage into the system can effectively reduce the system operation cost and improve the utilization efficiency of PP.展开更多
基金Science and Technology Project of State Grid Corporation of China(No.SGGSKY00FJJS1800140)。
文摘For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a multi-objective optimization scheduling strategy considering energy storage participation is proposed.Firstly,the new energy power system model is established,and the PP scenario generation and reduction frame based on the autoregressive moving average model and Kantorovich-distance is proposed.Then,based on the optimization goal of the system operation cost minimization and the PP output power consumption maximization,the multi-objective optimization scheduling model is established.Finally,the simulation results show that introducing energy storage into the system can effectively reduce the system operation cost and improve the utilization efficiency of PP.