根据储能元件Ragone曲线,提出了储能的设计方法。首先介绍了储能元件Ragone曲线的内涵,提出了基于储能元件数学模型的Ragone曲线绘制方法,推导并绘制了超级电容器的Ragone曲线。提出了基于Ragone曲线的储能元件的选择原则和容量计算方法...根据储能元件Ragone曲线,提出了储能的设计方法。首先介绍了储能元件Ragone曲线的内涵,提出了基于储能元件数学模型的Ragone曲线绘制方法,推导并绘制了超级电容器的Ragone曲线。提出了基于Ragone曲线的储能元件的选择原则和容量计算方法,以20k W 500k J储能系统为设计实例,进行了储能系统设计实例设计、仿真和实验证实了上述方法的有效性。展开更多
超导磁储能系统(superconducting magnetic energy storage,SMES)是超导应用研究的热点。SMES利用超导磁体的低损耗和快速响应能力,通过电力电子型变流器与电力系统相连,组合为一种既能为其储存电能又能为其释放电能的多功能电磁系统。S...超导磁储能系统(superconducting magnetic energy storage,SMES)是超导应用研究的热点。SMES利用超导磁体的低损耗和快速响应能力,通过电力电子型变流器与电力系统相连,组合为一种既能为其储存电能又能为其释放电能的多功能电磁系统。SMES的先进功能主要体现于,它能大容量超低损耗的储存电能、改善供电质量、提高系统的稳定性和可靠性。该文以SMES的优化设计(IEEE TEAM Workshop Problem 22)为例,介绍了序贯优化方法和克里金(Kriging)统计近似模型在低维和高维、离散域和连续域优化问题中的应用。优化结果显示,该优化方法能在保证设计精度的前提下,极大降低有限元的计算量。如3参数优化问题中有限元的计算量比直接优化的1/10还要少;而8参数优化问题中有限元的计算量约为直接优化的1/3。从而该方法可广泛应用于电磁装置的优化设计问题。展开更多
The operation of a motor drive for high-power, high-speed applications, especially for the permanent-magnet synchronous AC motors with regeneration capability is presented. Power system utilizes a SVHPWM (space-vecto...The operation of a motor drive for high-power, high-speed applications, especially for the permanent-magnet synchronous AC motors with regeneration capability is presented. Power system utilizes a SVHPWM (space-vector-based hybrid pulse width modulation) for a reduced harmonic distortion and switching loss. Associated electromagnetic interference mitigation and cooling requirements are significantly reduced. Voltage source inverter drives a three-phase MLC200 flywheel. The modularity of the proposed topology also simplifies overall system design and manufacturability. The system topology and control strategy are discussed. Simulation results are presented to illustrate the harmonic distortion and switching loss reduction and reduced line current ripple.展开更多
This study was done for one of the Nigerian National Petroleum Corporation (refiner) depot supplied by a multi-product (gasoline, diesel and kerosene) pipeline. Distribution/loading facility designed for a total o...This study was done for one of the Nigerian National Petroleum Corporation (refiner) depot supplied by a multi-product (gasoline, diesel and kerosene) pipeline. Distribution/loading facility designed for a total of six arms: two each for gasoline, kerosene and diesel (or 33.33% for each product) whereas gasoline storage capacity is 55%, diesel, 33%, kerosene 11%, and slops, 1% of the total depot capacity. The design supply to distribution chain capacity ratio showed a mismatch, which in actual operation becomes 2:1. The above design created ullage problem at sustained supplies, gross under utilization of supply chain infrastructures and poor operational performance. After a technical evaluation, a section of the depot storage to loading pipeline network was re-designed and modified to enable products supply capacity to match loading and minimize storage. Hence, the gasoline loading became 66.67%, kerosene and diesel, each of 16.67%, increasing the actual supply to distribution chain capacity ratio from 2:1 to 2:2 (and when required, can be maximized to 2:3) thereby correcting the apparent mismatch between the supply and distribution chain capacities. The modification has enabled the refiner to increase depot and upstream supply chain utilization展开更多
The integration and accommodation of the wind and solar energy pose great challenges on today’s power system operation due to the intermittent nature and volatility of the wind and solar resources.High efficient larg...The integration and accommodation of the wind and solar energy pose great challenges on today’s power system operation due to the intermittent nature and volatility of the wind and solar resources.High efficient large-scale electrical energy storage is one of the most effective and economical solutions to those problems.After the comprehensive review of the existing storage technologies,this paper proposes an overall design scheme for the Non-supplementary Fired Compressed Air Energy Storage(NFCAES)system,including system design,modeling and efficiency assessment,as well as protection and control.Especially,the design principles of the multistage regenerative,i.e.heat recovery system which is used to fully recycle and utilize the waste heat from compression are provided,so as the overall system efficiency evaluation method.This paper theoretically ascertains the storage decoupling rules in the potential and internal energy of molecular compressed air and reveals the conversion mechanism of gas,heat,power,electricity and other forms of energy.On this basis,a 500-k W physical simulation system of CAES system(TICC-500,Tsinghua-IPCCAS-CEPRI-CAES)is built,which passed a system-wide 420-k W load power generation test with less pollution and zero carbon emissions.Besides,the multi-form energy conversion of multi-stage regenerative CAES and storage efficiency is verified,especially its incomparable superiority in solving the uncertainty problem in wind and solar power generation.Finally,the propaganda and application scenario of the CAES system in China is introduced.展开更多
As an im portant branch of fiber-shaped energy storage devices, the fiber-shaped supercapacitor has been widely studied recently. However, it remains challenging to simultaneously achieve fast electron transport and e...As an im portant branch of fiber-shaped energy storage devices, the fiber-shaped supercapacitor has been widely studied recently. However, it remains challenging to simultaneously achieve fast electron transport and excellent ion accessibility in one single fiber electrode of the fibershaped supercapacitor. Herein, a novel family of amphiphilic core-sheath structured carbon nanotube composite fibers has been developed and applied to the fiber-shaped supercapacitor to address the above challenge. The polyaniline-modified hydrophilic sheath of the composite fiber electrode effectively enhanced the electrochemical property via advancing ion accessibility, while Au-deposited hydrophobic core demonstrated improved electrical conductivity by fast electron supply. On the basis of a synergistic effect, a remarkable specific capacitance of 324 F cm^-3 at 0.5 A cm^-3 and greatly enhanced rate performance were achieved, i.e” a 79% retention (256 F cm 3) at 50 A cm^-3. The obtained fiber-shaped supercapacitor finally displayed remarkable energy and power densities of 7.2 mW h cm 3 and 10 W cm^-3, respectively. The strategy developed herein also presents a general pathway towards novel fiber electrodes for high-performance wearable devices.展开更多
文摘根据储能元件Ragone曲线,提出了储能的设计方法。首先介绍了储能元件Ragone曲线的内涵,提出了基于储能元件数学模型的Ragone曲线绘制方法,推导并绘制了超级电容器的Ragone曲线。提出了基于Ragone曲线的储能元件的选择原则和容量计算方法,以20k W 500k J储能系统为设计实例,进行了储能系统设计实例设计、仿真和实验证实了上述方法的有效性。
文摘超导磁储能系统(superconducting magnetic energy storage,SMES)是超导应用研究的热点。SMES利用超导磁体的低损耗和快速响应能力,通过电力电子型变流器与电力系统相连,组合为一种既能为其储存电能又能为其释放电能的多功能电磁系统。SMES的先进功能主要体现于,它能大容量超低损耗的储存电能、改善供电质量、提高系统的稳定性和可靠性。该文以SMES的优化设计(IEEE TEAM Workshop Problem 22)为例,介绍了序贯优化方法和克里金(Kriging)统计近似模型在低维和高维、离散域和连续域优化问题中的应用。优化结果显示,该优化方法能在保证设计精度的前提下,极大降低有限元的计算量。如3参数优化问题中有限元的计算量比直接优化的1/10还要少;而8参数优化问题中有限元的计算量约为直接优化的1/3。从而该方法可广泛应用于电磁装置的优化设计问题。
文摘The operation of a motor drive for high-power, high-speed applications, especially for the permanent-magnet synchronous AC motors with regeneration capability is presented. Power system utilizes a SVHPWM (space-vector-based hybrid pulse width modulation) for a reduced harmonic distortion and switching loss. Associated electromagnetic interference mitigation and cooling requirements are significantly reduced. Voltage source inverter drives a three-phase MLC200 flywheel. The modularity of the proposed topology also simplifies overall system design and manufacturability. The system topology and control strategy are discussed. Simulation results are presented to illustrate the harmonic distortion and switching loss reduction and reduced line current ripple.
文摘This study was done for one of the Nigerian National Petroleum Corporation (refiner) depot supplied by a multi-product (gasoline, diesel and kerosene) pipeline. Distribution/loading facility designed for a total of six arms: two each for gasoline, kerosene and diesel (or 33.33% for each product) whereas gasoline storage capacity is 55%, diesel, 33%, kerosene 11%, and slops, 1% of the total depot capacity. The design supply to distribution chain capacity ratio showed a mismatch, which in actual operation becomes 2:1. The above design created ullage problem at sustained supplies, gross under utilization of supply chain infrastructures and poor operational performance. After a technical evaluation, a section of the depot storage to loading pipeline network was re-designed and modified to enable products supply capacity to match loading and minimize storage. Hence, the gasoline loading became 66.67%, kerosene and diesel, each of 16.67%, increasing the actual supply to distribution chain capacity ratio from 2:1 to 2:2 (and when required, can be maximized to 2:3) thereby correcting the apparent mismatch between the supply and distribution chain capacities. The modification has enabled the refiner to increase depot and upstream supply chain utilization
基金Science and Technology Fund of SGCC(Grant No.KJ-2012-627)The National Natural Science Foundation of China(Grant No.51321005)
文摘The integration and accommodation of the wind and solar energy pose great challenges on today’s power system operation due to the intermittent nature and volatility of the wind and solar resources.High efficient large-scale electrical energy storage is one of the most effective and economical solutions to those problems.After the comprehensive review of the existing storage technologies,this paper proposes an overall design scheme for the Non-supplementary Fired Compressed Air Energy Storage(NFCAES)system,including system design,modeling and efficiency assessment,as well as protection and control.Especially,the design principles of the multistage regenerative,i.e.heat recovery system which is used to fully recycle and utilize the waste heat from compression are provided,so as the overall system efficiency evaluation method.This paper theoretically ascertains the storage decoupling rules in the potential and internal energy of molecular compressed air and reveals the conversion mechanism of gas,heat,power,electricity and other forms of energy.On this basis,a 500-k W physical simulation system of CAES system(TICC-500,Tsinghua-IPCCAS-CEPRI-CAES)is built,which passed a system-wide 420-k W load power generation test with less pollution and zero carbon emissions.Besides,the multi-form energy conversion of multi-stage regenerative CAES and storage efficiency is verified,especially its incomparable superiority in solving the uncertainty problem in wind and solar power generation.Finally,the propaganda and application scenario of the CAES system in China is introduced.
基金supported by the Ministry of Science and Technology (2016YFA0203302)the National Natural Science Foundation of China (21634003, 51573027, 51673043, 21604012, 21805044 and 21875042)+1 种基金Shanghai Science and Technology Committee (16JC1400702, 17QA1400400, 18QA1400700 and 18QA1400800)SHMEC (2017-01-07-00-07-E00062)
文摘As an im portant branch of fiber-shaped energy storage devices, the fiber-shaped supercapacitor has been widely studied recently. However, it remains challenging to simultaneously achieve fast electron transport and excellent ion accessibility in one single fiber electrode of the fibershaped supercapacitor. Herein, a novel family of amphiphilic core-sheath structured carbon nanotube composite fibers has been developed and applied to the fiber-shaped supercapacitor to address the above challenge. The polyaniline-modified hydrophilic sheath of the composite fiber electrode effectively enhanced the electrochemical property via advancing ion accessibility, while Au-deposited hydrophobic core demonstrated improved electrical conductivity by fast electron supply. On the basis of a synergistic effect, a remarkable specific capacitance of 324 F cm^-3 at 0.5 A cm^-3 and greatly enhanced rate performance were achieved, i.e” a 79% retention (256 F cm 3) at 50 A cm^-3. The obtained fiber-shaped supercapacitor finally displayed remarkable energy and power densities of 7.2 mW h cm 3 and 10 W cm^-3, respectively. The strategy developed herein also presents a general pathway towards novel fiber electrodes for high-performance wearable devices.