期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
加氢精制催化剂废料中钼的回收 被引量:4
1
作者 孟宪红 李悦 刘玉珍 《环境保护》 CAS CSSCI 北大核心 1996年第4期39-41,共3页
本文主要阐述从生产加氢精制催化剂所产生的废料中回收钼的工艺条件和操作方法,本方法钼的一次回收率可达88%。并可回收一部分镍,其产品可用于加氢转化催化剂的再生产。本工艺简单,具有显著的经济效益和环境效益。
关键词 回收 催化剂废料 钼酸铵 浸取
下载PDF
从含钴催化剂废料中回收氧化钴的研究 被引量:3
2
作者 林河成 《四川有色金属》 2006年第1期12-15,共4页
选用酸溶———沉淀化学法,对含钴催化剂废料提取氧化钴的实验研究。实验结果表明,回收氧化钴产品中含钴量71%,氧化钴的实收率85%。同时将铁回收为铁红产品(含Fe2O3≤65%),铁的实收率高达88%。其它的技术经济指标较高。这是一种工艺技... 选用酸溶———沉淀化学法,对含钴催化剂废料提取氧化钴的实验研究。实验结果表明,回收氧化钴产品中含钴量71%,氧化钴的实收率85%。同时将铁回收为铁红产品(含Fe2O3≤65%),铁的实收率高达88%。其它的技术经济指标较高。这是一种工艺技术及设备可行的新途径。 展开更多
关键词 含钴催化剂废料 氧化钴 实验 新途径
下载PDF
用含钴催化剂废料制取氧化钴的研究 被引量:2
3
作者 林河成 《江西有色金属》 2000年第3期20-22,共3页
用含钴催化剂废料作原料 ,采用酸溶 -沉淀法工艺制取氧化钴。经过多次实验结果表明 ,该工艺技术是可行的 ,并获得了较好的技术经济指标。工业氧化钴含钴达到71.06 % ,钴的回收率大于85%。该工艺对于实现工业化生产很有价值和意义。
关键词 氧化钴 含钴催化剂废料 制取 酸溶-沉淀法
下载PDF
从催化剂废料中再生提纯铂
4
作者 傅积芳 冯蔓 《仪表材料》 CSCD 1989年第1期59-60,共2页
铂是贵重的铂族金属之一,由于稀缺和价格昂贵,我国目前使用的铂大部分仍靠进口。国内各行业中,每年产出几十吨含铂族金属的催化剂废料,进行再生回收其中有价值的铂族金属具有极大的经济意义。对于含贵金属废料——铂石棉再生回收铂的工... 铂是贵重的铂族金属之一,由于稀缺和价格昂贵,我国目前使用的铂大部分仍靠进口。国内各行业中,每年产出几十吨含铂族金属的催化剂废料,进行再生回收其中有价值的铂族金属具有极大的经济意义。对于含贵金属废料——铂石棉再生回收铂的工艺研究或工业生产国内目前尚未见报道,国外再生回收催化剂废料中的铂族金属的技术历来是严格保密的。 展开更多
关键词 再生 催化剂废料 金属废料处理
下载PDF
从含SbTe催化剂废料中回收Te工艺研究
5
作者 刘宇晖 《稀有金属与硬质合金》 CAS CSCD 北大核心 2015年第3期13-15,共3页
以含SbTe催化剂废料为原料,在常温常压下以2.5mol/L NaOH溶液为浸出剂,固液比控制在1∶5,搅拌浸出4h,Te浸出率达95%;以钢板为阳极、不锈钢板为阴极,在1.5~4.0V槽电压下沉积5h,Te沉积率达95%以上;最终可获得含56.76%Te的富集物。
关键词 含SbTe催化剂废料 Te回收工艺 碱性浸出 电沉积 Te富集物
下载PDF
Novel-structured Mo-Cu-Fe-O composite for catalytic air oxidation of dye-containing wastewater under ambient temperature and pressure 被引量:3
6
作者 Yin Xu Henan Shao +1 位作者 Fei Ge Yun Liu 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第10期1719-1725,共7页
A novel‐structured Mo‐Cu‐Fe‐O composite was successfully prepared by co‐precipitation and impregnation method.The properties of the as‐prepared samples were determined using X‐ray diffraction,temperature‐progr... A novel‐structured Mo‐Cu‐Fe‐O composite was successfully prepared by co‐precipitation and impregnation method.The properties of the as‐prepared samples were determined using X‐ray diffraction,temperature‐programmed reduction by H2,cyclic voltammetry,and temperature‐programmed desorption by O2.The results showed that Mo6+diffused into the Cu‐Fe‐O crystal lattice and then formed a new crystalline phase of CuMoO4.The Mo‐Cu‐Fe‐O catalyst had redox properties,and its surface contained active sites for oxygen adsorption.In addition,the catalytic activity of the Mo‐Cu‐Fe‐O composite was evaluated by the degradation of Cationic Red GTL,Crystal Violet,and Acid Red in catalytic wet air oxidation(CWAO)at ambient temperature and pressure.The Mo‐Cu‐Fe‐O catalyst showed excellent activity at basic conditions for the degradation of Cationic Red GTL.High removal efficiencies of91.5%and92.8%were achieved for Cationic Red GTL and Crystal Violet,respectively,in wastewater,and the efficiency remained high after seven cycles.However,almost no degradation of Acid Red occurred in the CWAO process.Furthermore,hydroxyl radicals were formed in the CWAO process,which induced the decomposition of the two cationic dyes in wastewater,and the toxicity of their effluents was decreased after degradation.The results indicate that the Mo‐Cu‐Fe‐O composite shows excellent catalytic activity for the treatment of wastewater contaminated with cationic dyes. 展开更多
关键词 Mo‐Cu‐Fe‐O catalyst Ambient temperature and pressure Dye wastewater Hydroxyl radical Oxidative degradation
下载PDF
Catalytic Cracking of Polyolefins in the Molten Phase——Basic Study for the Process Development of Waste Plastics Liquefaction
7
作者 Haruki Tani Kaoru Fujimoto 《Journal of Environmental Science and Engineering(B)》 2017年第7期352-361,共10页
The cracking of polyolefins, especially polyethylene in the molten state was effectively catalyzed by the powdery spent FCC (Fluid Catalytic Cracking) catalyst which was dispersed in it. The activation energy of the... The cracking of polyolefins, especially polyethylene in the molten state was effectively catalyzed by the powdery spent FCC (Fluid Catalytic Cracking) catalyst which was dispersed in it. The activation energy of the catalytic cracking of polyethylene was about 74 kJ/mol. The cracked product was naphtha and middle distillate as the major product and gaseous hydrocarbon (C1-C4) as the minor product while little heavy oil was produced. The chemical compositions of the product were: aromatic hydrocarbons, isoparaffins and branched olefins, whereas that of the non-catalyzed products were: n-olefins and n-paraffins with minor amount of dienes with increasing the process time. Additionally, the product pattern shifted from naphtha rich product to kerosene and gas-oil rich product. However, any catalytic product showed low fluid point (〈 -10 ℃), while that of the non-catalyzed product was as high as 40 ℃. Catalyst could process, more than 100 times by weight of polyethylene with fairly small amount (- 30 wt%) of coke deposition. Spent catalyst gave higher hydrocarbons while fresh catalyst gave gaseous product as the major product. Other polyolefins such as polypropylene and polystyrene were tested on same catalyst to show that their reactivity is higher than that of polyethylene and gave the aliphatic products, alkyl benzenes and C6-C9 iso-paraffins as the major product. Product pattern of the cracked product suggested that the reaction proceeded via the primary reactions making paraffins and olefins which were followed by the isomerization, secondary cracking, aromatization and hydrogen transfer which based on the carbenium ion mechanism. 展开更多
关键词 POLYOLEFIN spent FCC (Fluid Catalytic Cracking) catalyst catalytic cracking carbenium ion mechanism superiorstability.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部