Electrocatalytic water splitting provides an efficient method for the production of hydrogen.In electrocatalytic water splitting,the oxygen evolution reaction(OER)involves a kinetically sluggish four-electron transfer...Electrocatalytic water splitting provides an efficient method for the production of hydrogen.In electrocatalytic water splitting,the oxygen evolution reaction(OER)involves a kinetically sluggish four-electron transfer process,which limits the efficiency of electrocatalytic water splitting.Therefore,it is urgent to develop highly active OER catalysts to accelerate reaction kinetics.Coupling single atoms and clusters in one system is an innovative approach for developing efficient catalysts that can synergistically optimize the adsorption and configuration of intermediates and improve catalytic activity.However,research in this area is still scarce.Herein,we constructed a heterogeneous single-atom cluster system by anchoring Ir single atoms and Co clusters on the surface of Ni(OH)_(2)nanosheets.Ir single atoms and Co clusters synergistically improved the catalytic activity toward the OER.Specifically,Co_(n)Ir_(1)/Ni(OH)_(2)required an overpotential of 255 mV at a current density of 10 mA·cm^(−2),which was 60 mV and 67 mV lower than those of Co_(n)/Ni(OH)_(2)and Ir1/Ni(OH)_(2),respectively.The turnover frequency of Co_(n)Ir_(1)/Ni(OH)_(2)was 0.49 s^(−1),which was 4.9 times greater than that of Co_(n)/Ni(OH)_(2)at an overpotential of 300 mV.展开更多
The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral electrolytes,their efficien...The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral electrolytes,their efficiency is limited by(bi)carbonates formation.Acidic media have emerged as a solution,addressing the(bi)carbonates challenge but introducing the issue of the hydrogen evolu-tion reaction(HER),which reduces CO_(2) conversion efficiency in acidic environments.This review focuses on enhancing the selectivity of acidic CO_(2) electrolysis.It commences with an overview of the latest advancements in acidic CO_(2) electrolysis,focusing on product selectivity and electrocatalytic activity enhancements.It then delves into the critical factors shaping selectivity in acidic CO_(2) electrolysis,with a special emphasis on the influence of cations and catalyst design.Finally,the research challenges and personal perspectives of acidic CO_(2) electrolysis are suggested.展开更多
As a green and sustainable technology,heterogeneous photocatalysis using semiconductors has received much attention during the past decades because of its potential to address energy and environmental problems. Among ...As a green and sustainable technology,heterogeneous photocatalysis using semiconductors has received much attention during the past decades because of its potential to address energy and environmental problems. Among various semiconductors,TiO2 has been regarded as the best and most widely investigated photocatalyst in the past 10 years. Based on the fundamentals of photocatalysis and surface chemistry of TiO2 nanomaterials,we herein summarize and discuss the achievements in the different surface modification strategies employed to date such as surface doping and sensitization,construction of surface heterojunctions,loading of nano-sized co-catalysts,increase in the accessible surface areas,and usage of surface F effects and exposure of highly reactive facets. Especially,the interesting synergistic effects of these different surface modification strategies deserve more attention in the near future. Studying these important advances in photocatalysis fundamentals,and surface chemistry and modification may offer new opportunities for designing highly efficient TiO2-based and non-TiO2-based photocatalysts for solar fuel production,environmental remediation,organic photosynthesis,and other related fields such as solar cell device fabrication,thermal catalysis,and separation and purification.展开更多
This study focuses on drawing a hydrothermal synthesis process map for Co3O4 nanoparticles with various morphologies and investigating the effects of Co3O4 nanocatalyst morphology on CO oxidation.A series of cobalt-hy...This study focuses on drawing a hydrothermal synthesis process map for Co3O4 nanoparticles with various morphologies and investigating the effects of Co3O4 nanocatalyst morphology on CO oxidation.A series of cobalt-hydroxide-carbonate nanoparticles with various morphologies(i.e.,nanorods,nanosheets,and nanocubes) were successfully synthesized,and Co3O4 nanoparticles were obtained by thermal decomposition of the cobalt-hydroxide-carbonate precursors.The results suggest that the cobalt source is a key factor for controlling the morphology of cobalt-hydroxide-carbonate at relatively low hydrothermal temperatures(≤ 140℃).Nanorods can be synthesized in CoCl2 solution,while Co(NO3)2 solution promotes the formation of nanosheets.Further increasing the synthesis temperature(higher than 140 ℃) results in the formation of nanocubes in either Co(NO3)2 or CoCl2 solution.The reaction time only affects the size of the obtained nanoparticles.The presence of CTAB could improve the uniformity and dispersion of particles.Co3O4 nanosheets showed much higher catalytic activity for CO oxidation than nanorods and nanocubes because it has more abundant Co^(3+) on the surface,much higher reducibility,and better oxygen desorption capacity.展开更多
Copper–ceria(Cu O–CeO2) catalysts have been known to be very effective for the oxidation of CO, and their chemical behavior has been extensively studied during the last decades. However, the effect of different CeO2...Copper–ceria(Cu O–CeO2) catalysts have been known to be very effective for the oxidation of CO, and their chemical behavior has been extensively studied during the last decades. However, the effect of different CeO2 crystal surfaces on the catalytic activity of Cu O–CeO2 for the oxidation of CO is still unclear and should be further elucidated. In this study, we deposited 1 wt% Cu on mostly {100}-exposed CeO2 nanocubes(1 Cu Ce NC) and mostly {110}-exposed CeO2 nanorods(1 Cu Ce NR), respectively. Both 1 Cu Ce NC and 1 Cu Ce NR have been used as catalysts for the oxidation of CO and achieved 100% and 50% CO conversion at 130 ℃, respectively. The differences in the catalytic activity of 1 Cu Ce NC and 1 Cu Ce NR were analyzed using temperature-programmed reduction of H2 and temperature-programmed desorption of CO techniques. The results confirmed the excellent reducibility of the 1 Cu Ce NC catalyst, which was attributed to the weak interactions between Cu and the CeO2 support. Moreover, in situ diffuse reflectance infrared Fourier-transform spectroscopy studies indicated that the {100} planes of 1 Cu Ce NC facilitated the generation of active Cu(I) sites, which resulted in the formation of highly reactive Cu(I)-CO species during the oxidation of CO. Both the excellent redox properties and effective CO adsorption capacity of the 1 Cu Ce NC catalyst increased its catalytic reactivity.展开更多
Photocatalytic H2 production from water splitting is an effective method to solve energy crisis and environmental pollution simultaneously.Herein,carbon@CdS composite hollow spheres(C@CdS-HS)are fabricated via a facil...Photocatalytic H2 production from water splitting is an effective method to solve energy crisis and environmental pollution simultaneously.Herein,carbon@CdS composite hollow spheres(C@CdS-HS)are fabricated via a facile hydrothermal method using porous carbon hollow spheres(C-HS)as the template.The C@CdS-HS shows an excellent photocatalytic H2-generation rate of 20.9 mmol h^(−1) g^(−1)(apparent quantum efficiency of 15.3%at 420 nm),with 1.0 wt%Pt as a cocatalyst under simulated sunlight irradiation;this rate is 69.7,13.9,and 3.9 times higher than that obtained with pure CdS hollow spheres(CdS-HS),C@CdS-HS,and CdS-HS/Pt,respectively.The enhanced photocatalytic H_(2)-evolution activity of C@CdS-HS/Pt is due to the synergistic effect of C and Pt as the bi-cocatalyst.The C-HS serves not only as an active site provider but also as an electron transporter and reservoir.Moreover,C-HS has a strong photothermal effect that is induced by near infrared light,which kinetically accelerates the H_(2)-production reaction.Additionally,the underlying charge transfer pathway and process from CdS to C−HS is revealed.This work highlights the potential application of C-HS-based nanocomposites in solar-to-chemical energy conversion.展开更多
Supported Au catalysts have been reported to exhibit high ethylene selectivity in the hydrogenation of acetylene,but the conversion is relatively low.Adding a second metal to Au has proven to be a promising approach t...Supported Au catalysts have been reported to exhibit high ethylene selectivity in the hydrogenation of acetylene,but the conversion is relatively low.Adding a second metal to Au has proven to be a promising approach to enhance its catalytic performance in acetylene hydrogenation.In this work,SiO2‐supported Au‐Ni bimetallic catalysts were synthesized and investigated in the selective hydrogenation of acetylene.The Au‐Ni bimetallic catalysts exhibited much higher catalytic performance than that of the corresponding monometallic Au or Ni catalysts.By tuning the reduction temperature and/or Ni loading,we obtained an Au‐Ni/SiO2catalyst with optimal performance.The results of transmission electron microscopy imaging revealed that the Au‐Ni bimetallic particles were highly dispersed on the SiO2support.Meanwhile,analysis of the bimetallic catalyst by energy‐dispersive X‐ray spectroscopy,high‐resolution transmission electron microscopy,and in situ diffuse reflectance infrared Fourier transform spectroscopy demonstrated the formation of Au‐Ni alloy,which contributed to the synergistic effect between Au and Ni in the hydrogenation of acetylene.展开更多
The photoreduction of CO_(2)to achieve high-value-added hydrocarbons under simulated sunlight irradiation is advantageous,but challenging.In this study,a series of MgO and Au nanoparticle-co-modified g-C_(3)N_(4)photo...The photoreduction of CO_(2)to achieve high-value-added hydrocarbons under simulated sunlight irradiation is advantageous,but challenging.In this study,a series of MgO and Au nanoparticle-co-modified g-C_(3)N_(4)photocatalysts were synthesized and subsequently applied for the photocatalytic reduction of CO_(2)with H2O under simulated solar irradiation.The best photocatalytic performance was demonstrated by the Au and 3%MgO-co-modified g-C_(3)N_(4)photocatalysts with CO,CH_(4),CH3OH,and CH3CHO yields of 423.9,83.2,47.2,and 130.4μmol/g,respectively,in a 3-h reaction.We investigated the effects of MgO and Au as cocatalysts on photocatalytic behaviors,respectively.The characterizations and experimental results showed that the enhanced photocatalytic activity was due to the synergistic effect among the components of the ternary photocatalyst.The cocatalyst MgO can activate CO_(2)(adsorbed at the interface between the MgO and Au particles),and the Mg-N bonds formed in the MgO-CN nanosheets played an important role in the charge transfer.Meanwhile,the Au particles that were modified into MgO/g-C_(3)N_(4)can increase the absorption of visible light via the surface plasmon resonance effect and further reduce the activation energies of the photoreduction of CO_(2)using H2O.This study provided an effective method for the modification of traditional primary photocatalysts with promising performance for photocatalytic CO_(2)reduction.展开更多
The most energy-inefficient step in the oxygen evolution reaction(OER), which involves a complicated four-electron transfer process, limits the efficiency of the electrochemical water splitting. Here, well-defined Ni/...The most energy-inefficient step in the oxygen evolution reaction(OER), which involves a complicated four-electron transfer process, limits the efficiency of the electrochemical water splitting. Here, well-defined Ni/Co3O4 nanoparticles coupled with N-doped carbon hybrids(Ni/Co3O4@NC) were synthesized via a facile impregnation-calcination method as efficient electrocatalysts for OER in alkaline media. Notably, the impregnation of the polymer with Ni and Co ions in the first step ensured the homogeneous distribution of metals, thus guaranteeing the subsequent in situ calcination reaction, which produced well-dispersed Ni and Co3O4 nanoparticles. Moreover, the N-doped carbon matrix formed at high temperatures could effectively prevent the aggregation and coalescence, and regulate the electronic configuration of active species. Benefiting from the synergistic effect between the Ni, Co3O4, and NC species, the obtained Ni/Co3O4@NC hybrids exhibited enhanced OER activities and remarkable stability in an alkaline solution with a smaller overpotential of 350 m V to afford 10 m A cm-2, lower Tafel slope of 52.27 m V dec-1, smaller charge-transfer resistance, and higher double-layer capacitance of 25.53 m F cm-2 compared to those of unary Co3O4@NC or Ni@NC metal hybrids. Therefore, this paper presents a facile strategy for designing other heteroatom-doped oxides coupled with ideal carbon materials as electrocatalysts for the OER.展开更多
A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions:200 °C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonate...A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions:200 °C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonated cata-lyst (SC) had aromatic structure, composed of carbon enriched inner core, and oxygen-containing (SO3H, COOH, OH) groups enriched surface. The SO3H, COOH, OH groups amounted to 0.74 mmol·g^-1, 0.78 mmol·g^-1, 2.18 mmol·g^-1, respectively. The fresh SC showed much higher catalytic activity than that of the traditional solid acid catalysts (strong-acid 732 cation exchange resin, hydrogen type zeolite socony mobile-five (HZSM-5), sulfated zir-conia) in esterification of oleic acid. SC was deactivated during the reactions, through the mechanisms of leaching of sulfonated species and formation of sulfonate esters. Two regeneration methods were developed, and the catalytic activity can be mostly regenerated by regeneration Method 1 and be fully regenerated by regeneration Method 2, respectively.展开更多
The generation of multifunctional isolated active sites in zeolite supports is an attractive method for integrating multistep sequential reactions into a single‐pass tandem catalytic reaction.In this study,bifunction...The generation of multifunctional isolated active sites in zeolite supports is an attractive method for integrating multistep sequential reactions into a single‐pass tandem catalytic reaction.In this study,bifunctional TiSn‐Beta zeolite was prepared by a simple and scalable post‐synthesis approach,and it was utilized as an efficient heterogeneous catalyst for the tandem conversion of alkenes to 1,2‐diols.The isolated Ti and Sn Lewis acid sites within the TiSn‐Beta zeolite can efficiently integrate alkene epoxidation and epoxide hydration in tandem in a zeolite microreactor to achieve one‐step conversion of alkenes to 1,2‐diols with a high selectivity of>90%.Zeolite confinement effects result in high tandem rates of alkene epoxidation and epoxide hydration as well as high selectivity toward the desired product.Further,the novel method demonstrated herein can be employed to other tandem catalytic reactions for sustainable chemical production.展开更多
Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods...Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods were used as supports to prepare MnOx/CeO2‐NR, MnOx/CZ‐NR, MnOx/CA‐NR, and MnOx/CS‐NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high‐resolution TEM, X‐ray diffraction, Raman and N2‐physisorption analyses, hydrogen temperature‐programmed reduction, ammonia temperature‐programmed desorption, in situ diffuse reflectance infrared Fourier‐transform spectroscopic analysis of the NH3 adsorption, and X‐ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3‐selective catalytic reduction (NH3‐SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS‐NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS‐NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2‐NR catalyst.展开更多
The effect of a wide variety of metal oxide (MOx) supports has been discussed for CO oxidation on nanoparticulate gold catalysts. By using typical co‐precipitation and deposition–precipitation methods and under id...The effect of a wide variety of metal oxide (MOx) supports has been discussed for CO oxidation on nanoparticulate gold catalysts. By using typical co‐precipitation and deposition–precipitation methods and under identical calcination conditions, supported gold catalysts were prepared on a wide variety of MOx supports, and the temperature for 50%conversion was measured to qualita‐tively evaluate the catalytic activities of these simple MOx and supported Au catalysts. Furthermore, the difference in these temperatures for the simple MOx compared to the supported Au catalysts is plotted against the metal–oxygen binding energies of the support MOx. A clear volcano‐like correla‐tion between the temperature difference and the metal–oxygen binding energies is observed. This correlation suggests that the use of MOx with appropriate metal–oxygen binding energies (300–500 kJ/atom O) greatly improves the catalytic activity of MOx by the deposition of Au NPs.展开更多
In order to efficiently produce H_(2),conventional methanol‐water thermocatalytic(TC)reforming requires a very high temperature due to high Gibbs free energy,while the energy conversion efficiency of methanol‐water ...In order to efficiently produce H_(2),conventional methanol‐water thermocatalytic(TC)reforming requires a very high temperature due to high Gibbs free energy,while the energy conversion efficiency of methanol‐water photocatalytic(PC)reforming is far from satisfaction because of the kinetic limitation.To address these issues,herein,we incorporate PC and TC processes together in a specially designed reactor and realize simultaneous photocatalytic/thermocatalytic(PC‐TC)reforming of methanol in an aqueous phase.Such a design facilitates the synergetic effect of the PC and TC process for H_(2) production due to a lower energy barrier and faster reaction kinetics.The methanol‐water reforming based on the optimized 0.05%Pt@TiO_(2) catalyst delivers an outstanding H_(2) production rate in the PC‐TC process(5.66μmol H_(2)·g^(‒1) catalyst·s^(‒1)),which is about 3 and 7 times than those of the TC process(1.89μmol H_(2)·g^(‒1) catalyst·s^(‒1))and the PC process(0.80μmol H_(2)·g^(‒1) catalyst·s^(‒1)),respectively.Isotope tracer experiments,active intermediate trapping experiments,and theoretical calculations demonstrate that the photo‐generated holes and hydroxyl radicals could enhance the methanol dehydrogenation,water molecule splitting,and water‐gas shift reaction,while high temperature accelerates reaction kinetics.The proposed PC‐TC reforming of methanol for hydrogen production can be a promising technology to solve the energy and environmental issue in the closed‐loop hydrogen economy in the near future.展开更多
基金supported by the National Key Research and Development Program of China(2021YFA1500500,2019-YFA0405600)the CAS Project for Young Scientists in Basic Research(YSBR-051)+6 种基金the National Science Fund for Distinguished Young Scholars(21925204)the National Natural Science Foundation of China(22202192,U19A2015,22221003,22250007,22163002)the Collaborative Innovation Program of Hefei Science Center,CAS(2022HSCCIP004)the International Partnership,the DNL Cooperation Fund,CAS(DNL202003)the USTC Research Funds of the Double First-Class Initiative(YD9990002016,YD999000-2014)the Program of Chinese Academy of Sciences(123GJHZ2022101GC)the Fundamental Research Funds for the Central Universities(WK9990000095,WK999000-0124).
文摘Electrocatalytic water splitting provides an efficient method for the production of hydrogen.In electrocatalytic water splitting,the oxygen evolution reaction(OER)involves a kinetically sluggish four-electron transfer process,which limits the efficiency of electrocatalytic water splitting.Therefore,it is urgent to develop highly active OER catalysts to accelerate reaction kinetics.Coupling single atoms and clusters in one system is an innovative approach for developing efficient catalysts that can synergistically optimize the adsorption and configuration of intermediates and improve catalytic activity.However,research in this area is still scarce.Herein,we constructed a heterogeneous single-atom cluster system by anchoring Ir single atoms and Co clusters on the surface of Ni(OH)_(2)nanosheets.Ir single atoms and Co clusters synergistically improved the catalytic activity toward the OER.Specifically,Co_(n)Ir_(1)/Ni(OH)_(2)required an overpotential of 255 mV at a current density of 10 mA·cm^(−2),which was 60 mV and 67 mV lower than those of Co_(n)/Ni(OH)_(2)and Ir1/Ni(OH)_(2),respectively.The turnover frequency of Co_(n)Ir_(1)/Ni(OH)_(2)was 0.49 s^(−1),which was 4.9 times greater than that of Co_(n)/Ni(OH)_(2)at an overpotential of 300 mV.
文摘The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral electrolytes,their efficiency is limited by(bi)carbonates formation.Acidic media have emerged as a solution,addressing the(bi)carbonates challenge but introducing the issue of the hydrogen evolu-tion reaction(HER),which reduces CO_(2) conversion efficiency in acidic environments.This review focuses on enhancing the selectivity of acidic CO_(2) electrolysis.It commences with an overview of the latest advancements in acidic CO_(2) electrolysis,focusing on product selectivity and electrocatalytic activity enhancements.It then delves into the critical factors shaping selectivity in acidic CO_(2) electrolysis,with a special emphasis on the influence of cations and catalyst design.Finally,the research challenges and personal perspectives of acidic CO_(2) electrolysis are suggested.
基金supported by the Industry and Research Collaborative Innovation Major Projects Of Guangzhou(201508020098)the National Natural Science Foundation of China(20906034+2 种基金21173088and 21207041)the State Key Laboratory of Advanced Technology for Material Synthesis and Processing,Wuhan University of Technology(2015-KF-7)~~
文摘As a green and sustainable technology,heterogeneous photocatalysis using semiconductors has received much attention during the past decades because of its potential to address energy and environmental problems. Among various semiconductors,TiO2 has been regarded as the best and most widely investigated photocatalyst in the past 10 years. Based on the fundamentals of photocatalysis and surface chemistry of TiO2 nanomaterials,we herein summarize and discuss the achievements in the different surface modification strategies employed to date such as surface doping and sensitization,construction of surface heterojunctions,loading of nano-sized co-catalysts,increase in the accessible surface areas,and usage of surface F effects and exposure of highly reactive facets. Especially,the interesting synergistic effects of these different surface modification strategies deserve more attention in the near future. Studying these important advances in photocatalysis fundamentals,and surface chemistry and modification may offer new opportunities for designing highly efficient TiO2-based and non-TiO2-based photocatalysts for solar fuel production,environmental remediation,organic photosynthesis,and other related fields such as solar cell device fabrication,thermal catalysis,and separation and purification.
基金supported by the National Natural Science Foundation of China (51374004,51204083)the Candidate Talents Training Fund of Yun-nan Province (2012HB009,2014HB006)+2 种基金the Applied Basic Research Program of Yunnan Province (2014FB123)a School-Enterprise Cooperation Project from Jinchuan Corporation (Jinchuan 201115)the Talents Training Program of Kunming University of Science and Technology (KKZ3201352038)~~
文摘This study focuses on drawing a hydrothermal synthesis process map for Co3O4 nanoparticles with various morphologies and investigating the effects of Co3O4 nanocatalyst morphology on CO oxidation.A series of cobalt-hydroxide-carbonate nanoparticles with various morphologies(i.e.,nanorods,nanosheets,and nanocubes) were successfully synthesized,and Co3O4 nanoparticles were obtained by thermal decomposition of the cobalt-hydroxide-carbonate precursors.The results suggest that the cobalt source is a key factor for controlling the morphology of cobalt-hydroxide-carbonate at relatively low hydrothermal temperatures(≤ 140℃).Nanorods can be synthesized in CoCl2 solution,while Co(NO3)2 solution promotes the formation of nanosheets.Further increasing the synthesis temperature(higher than 140 ℃) results in the formation of nanocubes in either Co(NO3)2 or CoCl2 solution.The reaction time only affects the size of the obtained nanoparticles.The presence of CTAB could improve the uniformity and dispersion of particles.Co3O4 nanosheets showed much higher catalytic activity for CO oxidation than nanorods and nanocubes because it has more abundant Co^(3+) on the surface,much higher reducibility,and better oxygen desorption capacity.
文摘Copper–ceria(Cu O–CeO2) catalysts have been known to be very effective for the oxidation of CO, and their chemical behavior has been extensively studied during the last decades. However, the effect of different CeO2 crystal surfaces on the catalytic activity of Cu O–CeO2 for the oxidation of CO is still unclear and should be further elucidated. In this study, we deposited 1 wt% Cu on mostly {100}-exposed CeO2 nanocubes(1 Cu Ce NC) and mostly {110}-exposed CeO2 nanorods(1 Cu Ce NR), respectively. Both 1 Cu Ce NC and 1 Cu Ce NR have been used as catalysts for the oxidation of CO and achieved 100% and 50% CO conversion at 130 ℃, respectively. The differences in the catalytic activity of 1 Cu Ce NC and 1 Cu Ce NR were analyzed using temperature-programmed reduction of H2 and temperature-programmed desorption of CO techniques. The results confirmed the excellent reducibility of the 1 Cu Ce NC catalyst, which was attributed to the weak interactions between Cu and the CeO2 support. Moreover, in situ diffuse reflectance infrared Fourier-transform spectroscopy studies indicated that the {100} planes of 1 Cu Ce NC facilitated the generation of active Cu(I) sites, which resulted in the formation of highly reactive Cu(I)-CO species during the oxidation of CO. Both the excellent redox properties and effective CO adsorption capacity of the 1 Cu Ce NC catalyst increased its catalytic reactivity.
文摘Photocatalytic H2 production from water splitting is an effective method to solve energy crisis and environmental pollution simultaneously.Herein,carbon@CdS composite hollow spheres(C@CdS-HS)are fabricated via a facile hydrothermal method using porous carbon hollow spheres(C-HS)as the template.The C@CdS-HS shows an excellent photocatalytic H2-generation rate of 20.9 mmol h^(−1) g^(−1)(apparent quantum efficiency of 15.3%at 420 nm),with 1.0 wt%Pt as a cocatalyst under simulated sunlight irradiation;this rate is 69.7,13.9,and 3.9 times higher than that obtained with pure CdS hollow spheres(CdS-HS),C@CdS-HS,and CdS-HS/Pt,respectively.The enhanced photocatalytic H_(2)-evolution activity of C@CdS-HS/Pt is due to the synergistic effect of C and Pt as the bi-cocatalyst.The C-HS serves not only as an active site provider but also as an electron transporter and reservoir.Moreover,C-HS has a strong photothermal effect that is induced by near infrared light,which kinetically accelerates the H_(2)-production reaction.Additionally,the underlying charge transfer pathway and process from CdS to C−HS is revealed.This work highlights the potential application of C-HS-based nanocomposites in solar-to-chemical energy conversion.
基金supported by the National Natural Science Foundation of China (21303194,21476227,21522608,21573232,21690084)Youth Innovation Promotion Association of the Chinese Academy of Sciences (2014163)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020100)the National Key Projects for Fundamental Research and Development of China (2016YFA0202801)the Department of Science and Technology of Liaoning Province (2015020086-101)~~
文摘Supported Au catalysts have been reported to exhibit high ethylene selectivity in the hydrogenation of acetylene,but the conversion is relatively low.Adding a second metal to Au has proven to be a promising approach to enhance its catalytic performance in acetylene hydrogenation.In this work,SiO2‐supported Au‐Ni bimetallic catalysts were synthesized and investigated in the selective hydrogenation of acetylene.The Au‐Ni bimetallic catalysts exhibited much higher catalytic performance than that of the corresponding monometallic Au or Ni catalysts.By tuning the reduction temperature and/or Ni loading,we obtained an Au‐Ni/SiO2catalyst with optimal performance.The results of transmission electron microscopy imaging revealed that the Au‐Ni bimetallic particles were highly dispersed on the SiO2support.Meanwhile,analysis of the bimetallic catalyst by energy‐dispersive X‐ray spectroscopy,high‐resolution transmission electron microscopy,and in situ diffuse reflectance infrared Fourier transform spectroscopy demonstrated the formation of Au‐Ni alloy,which contributed to the synergistic effect between Au and Ni in the hydrogenation of acetylene.
文摘The photoreduction of CO_(2)to achieve high-value-added hydrocarbons under simulated sunlight irradiation is advantageous,but challenging.In this study,a series of MgO and Au nanoparticle-co-modified g-C_(3)N_(4)photocatalysts were synthesized and subsequently applied for the photocatalytic reduction of CO_(2)with H2O under simulated solar irradiation.The best photocatalytic performance was demonstrated by the Au and 3%MgO-co-modified g-C_(3)N_(4)photocatalysts with CO,CH_(4),CH3OH,and CH3CHO yields of 423.9,83.2,47.2,and 130.4μmol/g,respectively,in a 3-h reaction.We investigated the effects of MgO and Au as cocatalysts on photocatalytic behaviors,respectively.The characterizations and experimental results showed that the enhanced photocatalytic activity was due to the synergistic effect among the components of the ternary photocatalyst.The cocatalyst MgO can activate CO_(2)(adsorbed at the interface between the MgO and Au particles),and the Mg-N bonds formed in the MgO-CN nanosheets played an important role in the charge transfer.Meanwhile,the Au particles that were modified into MgO/g-C_(3)N_(4)can increase the absorption of visible light via the surface plasmon resonance effect and further reduce the activation energies of the photoreduction of CO_(2)using H2O.This study provided an effective method for the modification of traditional primary photocatalysts with promising performance for photocatalytic CO_(2)reduction.
文摘The most energy-inefficient step in the oxygen evolution reaction(OER), which involves a complicated four-electron transfer process, limits the efficiency of the electrochemical water splitting. Here, well-defined Ni/Co3O4 nanoparticles coupled with N-doped carbon hybrids(Ni/Co3O4@NC) were synthesized via a facile impregnation-calcination method as efficient electrocatalysts for OER in alkaline media. Notably, the impregnation of the polymer with Ni and Co ions in the first step ensured the homogeneous distribution of metals, thus guaranteeing the subsequent in situ calcination reaction, which produced well-dispersed Ni and Co3O4 nanoparticles. Moreover, the N-doped carbon matrix formed at high temperatures could effectively prevent the aggregation and coalescence, and regulate the electronic configuration of active species. Benefiting from the synergistic effect between the Ni, Co3O4, and NC species, the obtained Ni/Co3O4@NC hybrids exhibited enhanced OER activities and remarkable stability in an alkaline solution with a smaller overpotential of 350 m V to afford 10 m A cm-2, lower Tafel slope of 52.27 m V dec-1, smaller charge-transfer resistance, and higher double-layer capacitance of 25.53 m F cm-2 compared to those of unary Co3O4@NC or Ni@NC metal hybrids. Therefore, this paper presents a facile strategy for designing other heteroatom-doped oxides coupled with ideal carbon materials as electrocatalysts for the OER.
基金Supported by the National Natural Science Foundation of China(21276076)the Fundamental Research Funds for the Central Universities of China(WA1014003)State Key Laboratory of Chemical Engineering(SKL-ChE-10C06)
文摘A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions:200 °C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonated cata-lyst (SC) had aromatic structure, composed of carbon enriched inner core, and oxygen-containing (SO3H, COOH, OH) groups enriched surface. The SO3H, COOH, OH groups amounted to 0.74 mmol·g^-1, 0.78 mmol·g^-1, 2.18 mmol·g^-1, respectively. The fresh SC showed much higher catalytic activity than that of the traditional solid acid catalysts (strong-acid 732 cation exchange resin, hydrogen type zeolite socony mobile-five (HZSM-5), sulfated zir-conia) in esterification of oleic acid. SC was deactivated during the reactions, through the mechanisms of leaching of sulfonated species and formation of sulfonate esters. Two regeneration methods were developed, and the catalytic activity can be mostly regenerated by regeneration Method 1 and be fully regenerated by regeneration Method 2, respectively.
文摘The generation of multifunctional isolated active sites in zeolite supports is an attractive method for integrating multistep sequential reactions into a single‐pass tandem catalytic reaction.In this study,bifunctional TiSn‐Beta zeolite was prepared by a simple and scalable post‐synthesis approach,and it was utilized as an efficient heterogeneous catalyst for the tandem conversion of alkenes to 1,2‐diols.The isolated Ti and Sn Lewis acid sites within the TiSn‐Beta zeolite can efficiently integrate alkene epoxidation and epoxide hydration in tandem in a zeolite microreactor to achieve one‐step conversion of alkenes to 1,2‐diols with a high selectivity of>90%.Zeolite confinement effects result in high tandem rates of alkene epoxidation and epoxide hydration as well as high selectivity toward the desired product.Further,the novel method demonstrated herein can be employed to other tandem catalytic reactions for sustainable chemical production.
基金supported by National Natural Science Foundation of China (21876168, 21507130)Youth Innovation Promotion Association of CAS (2019376)the Chongqing Science & Technology Commission (cstc2016jcyjA0070, cstckjcxljrc13)~~
文摘Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods were used as supports to prepare MnOx/CeO2‐NR, MnOx/CZ‐NR, MnOx/CA‐NR, and MnOx/CS‐NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high‐resolution TEM, X‐ray diffraction, Raman and N2‐physisorption analyses, hydrogen temperature‐programmed reduction, ammonia temperature‐programmed desorption, in situ diffuse reflectance infrared Fourier‐transform spectroscopic analysis of the NH3 adsorption, and X‐ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3‐selective catalytic reduction (NH3‐SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS‐NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS‐NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2‐NR catalyst.
文摘The effect of a wide variety of metal oxide (MOx) supports has been discussed for CO oxidation on nanoparticulate gold catalysts. By using typical co‐precipitation and deposition–precipitation methods and under identical calcination conditions, supported gold catalysts were prepared on a wide variety of MOx supports, and the temperature for 50%conversion was measured to qualita‐tively evaluate the catalytic activities of these simple MOx and supported Au catalysts. Furthermore, the difference in these temperatures for the simple MOx compared to the supported Au catalysts is plotted against the metal–oxygen binding energies of the support MOx. A clear volcano‐like correla‐tion between the temperature difference and the metal–oxygen binding energies is observed. This correlation suggests that the use of MOx with appropriate metal–oxygen binding energies (300–500 kJ/atom O) greatly improves the catalytic activity of MOx by the deposition of Au NPs.
文摘In order to efficiently produce H_(2),conventional methanol‐water thermocatalytic(TC)reforming requires a very high temperature due to high Gibbs free energy,while the energy conversion efficiency of methanol‐water photocatalytic(PC)reforming is far from satisfaction because of the kinetic limitation.To address these issues,herein,we incorporate PC and TC processes together in a specially designed reactor and realize simultaneous photocatalytic/thermocatalytic(PC‐TC)reforming of methanol in an aqueous phase.Such a design facilitates the synergetic effect of the PC and TC process for H_(2) production due to a lower energy barrier and faster reaction kinetics.The methanol‐water reforming based on the optimized 0.05%Pt@TiO_(2) catalyst delivers an outstanding H_(2) production rate in the PC‐TC process(5.66μmol H_(2)·g^(‒1) catalyst·s^(‒1)),which is about 3 and 7 times than those of the TC process(1.89μmol H_(2)·g^(‒1) catalyst·s^(‒1))and the PC process(0.80μmol H_(2)·g^(‒1) catalyst·s^(‒1)),respectively.Isotope tracer experiments,active intermediate trapping experiments,and theoretical calculations demonstrate that the photo‐generated holes and hydroxyl radicals could enhance the methanol dehydrogenation,water molecule splitting,and water‐gas shift reaction,while high temperature accelerates reaction kinetics.The proposed PC‐TC reforming of methanol for hydrogen production can be a promising technology to solve the energy and environmental issue in the closed‐loop hydrogen economy in the near future.