Three-dimensionally ordered macro-/mesoporous alumina(3DOM Al2O3)-supported cobalt oxide and platinum nanocatalysts(xPt/yCo3O4/3DOM Al2O3,Pt mass fraction(x%)= 0-1.4%,Co3O4 mass fraction(y%) = 0-9.2%) were pre...Three-dimensionally ordered macro-/mesoporous alumina(3DOM Al2O3)-supported cobalt oxide and platinum nanocatalysts(xPt/yCo3O4/3DOM Al2O3,Pt mass fraction(x%)= 0-1.4%,Co3O4 mass fraction(y%) = 0-9.2%) were prepared using poly(methyl methacrylate) templating,incipient wetness impregnation and polyvinyl alcohol-protected reduction.The resulting xPt/yCo3O4/3DOM Al2O3 samples displayed a high-quality 3DOM architecture with macropores(180-200 nm in diameter) and mesopores(4-6 nm in diameter) together with surface areas in the range of 94 to 102m^2/g.Using these techniques,Co3O4 nanoparticles(NPs,18.3 nm) were loaded on the 3DOM Al2O3 surface,after which Pt NPs(2.3-2.5 nm) were uniformly dispersed on theyCo3O4/3DOM Al2O3.The1.3Pt/8.9Co3O4/3DOM Al2O3 exhibited the best performance for toluene oxidation,with a T(90%) value(the temperature required to achieve 90%toluene conversion) of 160 ℃ at a space velocity of20000 mL g^(-1) h^(-1).It is concluded that the excellent catalytic performance of the 1.3Pt/8.9Co3O4/3DOM Al2O3 is owing to well-dispersed Pt NPs,the high concentration of adsorbed oxygen species,good low-temperature reducibility,and strong interaction between the Pt and Co3O4 NPs,as well as the unique bimodal porous structure of the support.展开更多
The selective oxidation of toluene and its derivatives is extremely important in the chemical industry.The use of photocatalysis in organic synthesis has attracted considerable attention among synthetic chemists becau...The selective oxidation of toluene and its derivatives is extremely important in the chemical industry.The use of photocatalysis in organic synthesis has attracted considerable attention among synthetic chemists because of its "green" environmental characteristics.In this study,nanoscale Bi_2WO_6with a flower-like morphology was found to be a highly efficient photocatalyst in the catalytic oxidation of toluene and its derivatives using O_2 as the oxidant.The loading of Pd nanoparticles as a cocatalyst onto the flower-like Bi_2WO_6 was found to produce a significant enhancement in the catalytic activity.Mechanistic investigation showed that the superior performance of Pd/Bi_2WO_6 could be attributed to the improvement of both the reductive and oxidative abilities of Bi_2WO_6 by the loading of the cocatalyst.展开更多
基金supported by the National High Technology Research and Development Program of China(863 Program,2015AA034603)the National Natural Science Foundation of China(21377008)Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal Institutions
文摘Three-dimensionally ordered macro-/mesoporous alumina(3DOM Al2O3)-supported cobalt oxide and platinum nanocatalysts(xPt/yCo3O4/3DOM Al2O3,Pt mass fraction(x%)= 0-1.4%,Co3O4 mass fraction(y%) = 0-9.2%) were prepared using poly(methyl methacrylate) templating,incipient wetness impregnation and polyvinyl alcohol-protected reduction.The resulting xPt/yCo3O4/3DOM Al2O3 samples displayed a high-quality 3DOM architecture with macropores(180-200 nm in diameter) and mesopores(4-6 nm in diameter) together with surface areas in the range of 94 to 102m^2/g.Using these techniques,Co3O4 nanoparticles(NPs,18.3 nm) were loaded on the 3DOM Al2O3 surface,after which Pt NPs(2.3-2.5 nm) were uniformly dispersed on theyCo3O4/3DOM Al2O3.The1.3Pt/8.9Co3O4/3DOM Al2O3 exhibited the best performance for toluene oxidation,with a T(90%) value(the temperature required to achieve 90%toluene conversion) of 160 ℃ at a space velocity of20000 mL g^(-1) h^(-1).It is concluded that the excellent catalytic performance of the 1.3Pt/8.9Co3O4/3DOM Al2O3 is owing to well-dispersed Pt NPs,the high concentration of adsorbed oxygen species,good low-temperature reducibility,and strong interaction between the Pt and Co3O4 NPs,as well as the unique bimodal porous structure of the support.
基金supported by the National Natural Science Foundation of China(21322202,21472187)the National Basic Research Program of China(2010CB833300)~~
文摘The selective oxidation of toluene and its derivatives is extremely important in the chemical industry.The use of photocatalysis in organic synthesis has attracted considerable attention among synthetic chemists because of its "green" environmental characteristics.In this study,nanoscale Bi_2WO_6with a flower-like morphology was found to be a highly efficient photocatalyst in the catalytic oxidation of toluene and its derivatives using O_2 as the oxidant.The loading of Pd nanoparticles as a cocatalyst onto the flower-like Bi_2WO_6 was found to produce a significant enhancement in the catalytic activity.Mechanistic investigation showed that the superior performance of Pd/Bi_2WO_6 could be attributed to the improvement of both the reductive and oxidative abilities of Bi_2WO_6 by the loading of the cocatalyst.