A merger of copper catalysis and semiconductor photocatalysis using polymeric carbon nitride(PCN)for multi-type cross-coupling reactions was developed.This dual-catalytic system enables mild C-H arylation,chalcogenati...A merger of copper catalysis and semiconductor photocatalysis using polymeric carbon nitride(PCN)for multi-type cross-coupling reactions was developed.This dual-catalytic system enables mild C-H arylation,chalcogenation,and C-N cross-coupling reactions under visible light irradiation with a broad substrate scope.Good-to-excellent yields were obtained with appreciable site selectivity and functional group tolerance.Metal-free and low-cost PCN photocatalyst can easily be recovered and reused several times.展开更多
Palladium nanoparticles immobilized on a cross-linked imidazolium-containing polymer were evaluated as a catalyst for Suzuki carbon-carbon cross-coupling reactions using water as the solvent. The nanocatalysts show go...Palladium nanoparticles immobilized on a cross-linked imidazolium-containing polymer were evaluated as a catalyst for Suzuki carbon-carbon cross-coupling reactions using water as the solvent. The nanocatalysts show good catalytic activities for aryl iodides and aryl bromides and moderate activity with aryl chloride substrates. Coupling of sterically hindered substrates could also be achieved in reasonable yields. The heterogeneous catalyst is stable, can be stored without precautions to exclude air or moisture, and can be easily recycled and reused.展开更多
基金supported by the National Natural Science Foundation of China(21972094 and 21805191)Guangdong Special Support Program+4 种基金Pengcheng Scholar ProgramChina Postdoctoral Science Foundation(2019M653004)Shenzhen Peacock Plan(KQTD2016053112042971)Shenzhen Science and Technology Program(JCYJ20190808142001745,JCYJ20200812160737002,and RCJC20200714114434086)Guangdong Basic and Applied Basic Research Foundation(2020A1515010982)。
文摘A merger of copper catalysis and semiconductor photocatalysis using polymeric carbon nitride(PCN)for multi-type cross-coupling reactions was developed.This dual-catalytic system enables mild C-H arylation,chalcogenation,and C-N cross-coupling reactions under visible light irradiation with a broad substrate scope.Good-to-excellent yields were obtained with appreciable site selectivity and functional group tolerance.Metal-free and low-cost PCN photocatalyst can easily be recovered and reused several times.
基金supported by the Ecole Polytechnique Fédérale de Lausanne and the Iranian Ministry of Science,Research and Technology(to S.G.-E.)
文摘Palladium nanoparticles immobilized on a cross-linked imidazolium-containing polymer were evaluated as a catalyst for Suzuki carbon-carbon cross-coupling reactions using water as the solvent. The nanocatalysts show good catalytic activities for aryl iodides and aryl bromides and moderate activity with aryl chloride substrates. Coupling of sterically hindered substrates could also be achieved in reasonable yields. The heterogeneous catalyst is stable, can be stored without precautions to exclude air or moisture, and can be easily recycled and reused.