Several MoS2 catalysts of different structure, prepared by in situ decomposition of ammonium heptamolybdate (AHM) and molybdenum naphthenate (MoNaph), and by MoS2 exfoliation (TDM), were characterized by BET, X-...Several MoS2 catalysts of different structure, prepared by in situ decomposition of ammonium heptamolybdate (AHM) and molybdenum naphthenate (MoNaph), and by MoS2 exfoliation (TDM), were characterized by BET, X-ray diffraction (XRD), Energy Dispersive X-ray (EDX) and transmission electron microscopy (TEM). The analysis showed that MoS2 structure was dependant upon the preparation procedure. The activity of the catalysts was determined by measuring the hydrodeoxygenation (HDO) of phenol, 4-methylphenol and 4-methoxyphenol using a batch autoclave reactor operated at 2.8 MPa of hydrogen and temperatures ranging from 320-370℃. By comparing the conversion, the reactivity order of the catalysts was: AHM〉TDM-D〉MoNaph〉thermal〉MoS2 powder〉 TDM-W. Also, the effect of reaction temperature on the HDO conversion was explained in terms of equilibrium of reversible reaction kinetics. The main products of the HDO for phenolic compounds were identified by gas chromatography/mass spectrometry (GC/MS). The results showed that the product distribution and the HDO selectivity were correlated with the reaction temperature. Two parallel reaction routes, direct hydrogenolysis and combined hydrogenation-hydrogenolysis, were confirmed by the analysis of the product distribution. High temperature favored hydrogenolysis over hydrogenation for HDO of phenol and 4-methoxyphenol, whereas for 4-methylphenol the reverse was true.展开更多
The results of commercial application of two types of C_8 aromatics isomerization catalysts under different feed conditions were compared to gain an insight in the techno-economical basis for selecting proper technolo...The results of commercial application of two types of C_8 aromatics isomerization catalysts under different feed conditions were compared to gain an insight in the techno-economical basis for selecting proper technological route at the plant.The comparison reveals differences in every aspect of feed consumption,unit capacity,product output,product distribution,and unit process parameters depending upon which catalyst type is adopted by the integrated PX complex.The type of aromatics isomerization catalyst has its influence on the plant scale,the construction cost,the process unit capacity and the product cost,with the magnitude of its impact varying with changing feed conditions.展开更多
A new scheme for the preparation of highly dispersed precious metal catalysts is proposed in this work. Samples of LaCol-xPtxO3/SiO2 (x = 0.03, 0.05, 0.07, 0.09, and 0.10) were prepared through a simple method of ci...A new scheme for the preparation of highly dispersed precious metal catalysts is proposed in this work. Samples of LaCol-xPtxO3/SiO2 (x = 0.03, 0.05, 0.07, 0.09, and 0.10) were prepared through a simple method of citrate acid complexa-tion combined with impregnation. In a nanocrystallite of LaCOl-xPtxO3, ions of lanthanum, cobalt, and platinum are evenly mixed at the atomic level and confined within the nanocrystallite. In the reduction process, platinum ions were reduced and migrated onto the surface of the nanocrystallite, and the platinum should be highly dispersed owing to the even mixing of the platinum ions in the precursor. When x = 0.05 or lower, the highest dispersion of Pt could be achieved. The highly dispersed Pt is stable, because of the strong interaction between Pt atoms and the support. The catalysts were characterized by BET surface area, temperature-programmed reduction, X-ray diffraction, transmission electron microscopy, CO temperature-programmed desorption, and turnover frequency. Compared with general precious metal Pt catalysts, the LaCo0.95Pt0.05O3/ SiO2 catalyst exhibited better activity for CO oxidation, and it maintained stability at a high temperature of 400 ℃ for 250 h with complete CO conversion.展开更多
A heterogeneous titanate nanotube (TNT) catalyst containing TiO2, Na, and V has been synthesized and used in the chemoselective oxidation of sulfides to the corresponding sulfoxides in the presence of 30%H2O2 in wat...A heterogeneous titanate nanotube (TNT) catalyst containing TiO2, Na, and V has been synthesized and used in the chemoselective oxidation of sulfides to the corresponding sulfoxides in the presence of 30%H2O2 in water. Some of the advantages of our method include excellent yields, heterogene‐ous conditions, simplicity, compatibility with a variety of functionalities, and ease of isolation of the products. Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, and N2 adsorption were used for structural and textural charac‐terization of the catalyst (VNaTNT).展开更多
Results of researches on study of the kinetics and isomerization mechanism of the alkyladamantanes in the presence of the heterogeneous catalysts of the acid type are considered as detection and experimental proof of ...Results of researches on study of the kinetics and isomerization mechanism of the alkyladamantanes in the presence of the heterogeneous catalysts of the acid type are considered as detection and experimental proof of a new intramolecular rearrangement of the carbcations bridged alicyclic hydrocarbons--2,4-moving of the methyl groups (β-methyl shift). The proof of realization of such rearrangement is direct and primary formation 1,4-dimethyladamantane from 1,2-dimethyladamatane, passing a formation stage of the thermodynamic much stable 1,3-dimethyladamantane; direct formation 1,3,6-trimethyladamantane from 1,3,4-trimethyladamantane, excepting a formation stage 1,3.5-trimethyladamantane, and also other isomers which formation is impossible to explain by means of known 1,2-methyl shift (a-methyl shift).展开更多
文摘Several MoS2 catalysts of different structure, prepared by in situ decomposition of ammonium heptamolybdate (AHM) and molybdenum naphthenate (MoNaph), and by MoS2 exfoliation (TDM), were characterized by BET, X-ray diffraction (XRD), Energy Dispersive X-ray (EDX) and transmission electron microscopy (TEM). The analysis showed that MoS2 structure was dependant upon the preparation procedure. The activity of the catalysts was determined by measuring the hydrodeoxygenation (HDO) of phenol, 4-methylphenol and 4-methoxyphenol using a batch autoclave reactor operated at 2.8 MPa of hydrogen and temperatures ranging from 320-370℃. By comparing the conversion, the reactivity order of the catalysts was: AHM〉TDM-D〉MoNaph〉thermal〉MoS2 powder〉 TDM-W. Also, the effect of reaction temperature on the HDO conversion was explained in terms of equilibrium of reversible reaction kinetics. The main products of the HDO for phenolic compounds were identified by gas chromatography/mass spectrometry (GC/MS). The results showed that the product distribution and the HDO selectivity were correlated with the reaction temperature. Two parallel reaction routes, direct hydrogenolysis and combined hydrogenation-hydrogenolysis, were confirmed by the analysis of the product distribution. High temperature favored hydrogenolysis over hydrogenation for HDO of phenol and 4-methoxyphenol, whereas for 4-methylphenol the reverse was true.
文摘The results of commercial application of two types of C_8 aromatics isomerization catalysts under different feed conditions were compared to gain an insight in the techno-economical basis for selecting proper technological route at the plant.The comparison reveals differences in every aspect of feed consumption,unit capacity,product output,product distribution,and unit process parameters depending upon which catalyst type is adopted by the integrated PX complex.The type of aromatics isomerization catalyst has its influence on the plant scale,the construction cost,the process unit capacity and the product cost,with the magnitude of its impact varying with changing feed conditions.
基金supported by the National Natural Science Foundation of China(Nos.21576192,21776214)
文摘A new scheme for the preparation of highly dispersed precious metal catalysts is proposed in this work. Samples of LaCol-xPtxO3/SiO2 (x = 0.03, 0.05, 0.07, 0.09, and 0.10) were prepared through a simple method of citrate acid complexa-tion combined with impregnation. In a nanocrystallite of LaCOl-xPtxO3, ions of lanthanum, cobalt, and platinum are evenly mixed at the atomic level and confined within the nanocrystallite. In the reduction process, platinum ions were reduced and migrated onto the surface of the nanocrystallite, and the platinum should be highly dispersed owing to the even mixing of the platinum ions in the precursor. When x = 0.05 or lower, the highest dispersion of Pt could be achieved. The highly dispersed Pt is stable, because of the strong interaction between Pt atoms and the support. The catalysts were characterized by BET surface area, temperature-programmed reduction, X-ray diffraction, transmission electron microscopy, CO temperature-programmed desorption, and turnover frequency. Compared with general precious metal Pt catalysts, the LaCo0.95Pt0.05O3/ SiO2 catalyst exhibited better activity for CO oxidation, and it maintained stability at a high temperature of 400 ℃ for 250 h with complete CO conversion.
基金Shahreza Branch, Islamic Azad University for financial support
文摘A heterogeneous titanate nanotube (TNT) catalyst containing TiO2, Na, and V has been synthesized and used in the chemoselective oxidation of sulfides to the corresponding sulfoxides in the presence of 30%H2O2 in water. Some of the advantages of our method include excellent yields, heterogene‐ous conditions, simplicity, compatibility with a variety of functionalities, and ease of isolation of the products. Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, and N2 adsorption were used for structural and textural charac‐terization of the catalyst (VNaTNT).
文摘Results of researches on study of the kinetics and isomerization mechanism of the alkyladamantanes in the presence of the heterogeneous catalysts of the acid type are considered as detection and experimental proof of a new intramolecular rearrangement of the carbcations bridged alicyclic hydrocarbons--2,4-moving of the methyl groups (β-methyl shift). The proof of realization of such rearrangement is direct and primary formation 1,4-dimethyladamantane from 1,2-dimethyladamatane, passing a formation stage of the thermodynamic much stable 1,3-dimethyladamantane; direct formation 1,3,6-trimethyladamantane from 1,3,4-trimethyladamantane, excepting a formation stage 1,3.5-trimethyladamantane, and also other isomers which formation is impossible to explain by means of known 1,2-methyl shift (a-methyl shift).