The immobilized nickel(II) on the organic-inorganic hybrid material was prepared and used as an effective catalyst for the Biginelli reaction.In the presence of the immobilized nickel catalyst,aromatic aldehydes react...The immobilized nickel(II) on the organic-inorganic hybrid material was prepared and used as an effective catalyst for the Biginelli reaction.In the presence of the immobilized nickel catalyst,aromatic aldehydes reacted with ethyl acetoacetate and urea (or thiourea) smoothly to generate the corresponding Biginelli products in good to excellent yields without using any additive.The work-up procedure is very simple and practical.Furthermore,the silica-supported nickel(II) could be recovered and recycled for six consecutive trials without significant loss of its catalytic activity.展开更多
Monodisperse Ni/Pd core/shell nanoparticles (NPs) have been synthesized by sequential reduction of nickel(II) acetate and palladium(II) bromide in oleylamine (OAm) and trioctylphosphine (TOP). The Ni/Pd NPs ...Monodisperse Ni/Pd core/shell nanoparticles (NPs) have been synthesized by sequential reduction of nickel(II) acetate and palladium(II) bromide in oleylamine (OAm) and trioctylphosphine (TOP). The Ni/Pd NPs have a narrow size distribution with a mean particle size of 10 nm and a standard deviation of 5% with respect to the particle diameter. Mechanistic studies showed that the presence of TOP was essential to control the reductive decomposition of Ni-TOP and Pd-TOP, and the formation of Ni/Pd core/shell NPs. Using the current synthetic protocol, the composition of the Ni/Pd within the core/shell structure can be readily tuned by simply controlling the initial molar ratio of the Ni and Pd salts. The as-synthesized Ni/Pd core/shell NPs were supported on graphene (G) and used as catalyst in Suzuki-Miyaura cross-coupling reactions. Among three different kinds of Ni/Pd NPs tested, the Ni/Pd (Ni/Pd = 3/2) NPs were found to be the most active catalyst for the Suzuki-Miyaura cross-coupling of arylboronic acids with aryl iodides, bromides and even chlorides in a dimethylformamide/water mixture by using K2CO3 as a base at 110 ℃. The G-Ni/Pd was also stable and reusable, providing 98% conversion after the 5th catalytic run without showing any noticeable Ni/Pd composition change. The G-Ni/Pd structure reported in this paper combines both the efficiency of a homogeneous catalyst and the durability of a heterogeneous catalyst, and is promising catalyst candidate for various Pd-based catalytic applications.展开更多
Regulating the selectivity of catalysts in selective hydrogenation reactions at the atomic level is highly desirable but remains a grand challenge. Here we report a simple and practical strategy to synthesize a monoli...Regulating the selectivity of catalysts in selective hydrogenation reactions at the atomic level is highly desirable but remains a grand challenge. Here we report a simple and practical strategy to synthesize a monolithic single-atom catalyst(SAC) with isolated Pd atoms supported on bulk nitrogen-doped carbon foams(Pd-SAs/CNF). Moreover, we demonstrate that the single-atom Pd sites with unique electronic structure endow Pd-SAs/CNF with an isolated site effect, leading to excellent activity and selectivity in 4-nitrophenylacetylene semi-hydrogenation reaction. In addition, benefiting from the great integrity and excellent mechanical strength, monolithic Pd-SAs/CNF catalyst is easy to separate from the reaction system for conducting the subsequent recycling. The cyclic test demonstrates the excellent reusability and stability of monolithic Pd-SAs/CNF catalyst.The discovery of isolated site effect provides a new approach to design highly selective catalysts. And the development of monolithic SACs provides new opportunities to advance the practical applications of single-atom catalysts.展开更多
Olefins and allylic alcohols have been epoxidized with commercially available hydrogen peroxide (30% H2O2) using a phase transfer catalyst,composed of cetyltrimethylammonium cations and a lacunary-type phosphotungstat...Olefins and allylic alcohols have been epoxidized with commercially available hydrogen peroxide (30% H2O2) using a phase transfer catalyst,composed of cetyltrimethylammonium cations and a lacunary-type phosphotungstate anion [PW11O39]7-or the complete Keggin-type heteropolyanion [PW12O40]3-,under two-phase conditions using ethyl acetate as the solvent. It was found that the lacunary-type catalyst showed higher activity and better recyclability than the complete Keggin-type catalyst under the same reaction conditions. 31P NMR spectroscopy and solubility measurements for the two catalysts revealed that the [PW11O39]7-anion had a much faster degradation rate than the [PW12O40]3-anion in an excess of H2O2,which resulted in the formation of more catalytically active species. As a result,the lacunary-type phosphotungstate anion-based catalyst gave a better catalytic performance than the complete Keggin-type anion in ethyl acetate.展开更多
基金financial support by the National Natural Science Foundation of China (20972057, 20772043)the Excellent Scientist Foundation of Anhui Province, China (04046080)the Natural Science Foundation of Anhui Province's Higher Education, China (KJ2009B212Z)
文摘The immobilized nickel(II) on the organic-inorganic hybrid material was prepared and used as an effective catalyst for the Biginelli reaction.In the presence of the immobilized nickel catalyst,aromatic aldehydes reacted with ethyl acetoacetate and urea (or thiourea) smoothly to generate the corresponding Biginelli products in good to excellent yields without using any additive.The work-up procedure is very simple and practical.Furthermore,the silica-supported nickel(II) could be recovered and recycled for six consecutive trials without significant loss of its catalytic activity.
文摘Monodisperse Ni/Pd core/shell nanoparticles (NPs) have been synthesized by sequential reduction of nickel(II) acetate and palladium(II) bromide in oleylamine (OAm) and trioctylphosphine (TOP). The Ni/Pd NPs have a narrow size distribution with a mean particle size of 10 nm and a standard deviation of 5% with respect to the particle diameter. Mechanistic studies showed that the presence of TOP was essential to control the reductive decomposition of Ni-TOP and Pd-TOP, and the formation of Ni/Pd core/shell NPs. Using the current synthetic protocol, the composition of the Ni/Pd within the core/shell structure can be readily tuned by simply controlling the initial molar ratio of the Ni and Pd salts. The as-synthesized Ni/Pd core/shell NPs were supported on graphene (G) and used as catalyst in Suzuki-Miyaura cross-coupling reactions. Among three different kinds of Ni/Pd NPs tested, the Ni/Pd (Ni/Pd = 3/2) NPs were found to be the most active catalyst for the Suzuki-Miyaura cross-coupling of arylboronic acids with aryl iodides, bromides and even chlorides in a dimethylformamide/water mixture by using K2CO3 as a base at 110 ℃. The G-Ni/Pd was also stable and reusable, providing 98% conversion after the 5th catalytic run without showing any noticeable Ni/Pd composition change. The G-Ni/Pd structure reported in this paper combines both the efficiency of a homogeneous catalyst and the durability of a heterogeneous catalyst, and is promising catalyst candidate for various Pd-based catalytic applications.
基金supported by the National Key R&D Program of China (2018YFA0702003)the National Natural Science Foundation of China (21890383,21671117,21871159 and 21901135)+1 种基金the National Postdoctoral Program for Innovative Talents (BX20180160)the China Postdoctoral Science Foundation (2018M640113)。
文摘Regulating the selectivity of catalysts in selective hydrogenation reactions at the atomic level is highly desirable but remains a grand challenge. Here we report a simple and practical strategy to synthesize a monolithic single-atom catalyst(SAC) with isolated Pd atoms supported on bulk nitrogen-doped carbon foams(Pd-SAs/CNF). Moreover, we demonstrate that the single-atom Pd sites with unique electronic structure endow Pd-SAs/CNF with an isolated site effect, leading to excellent activity and selectivity in 4-nitrophenylacetylene semi-hydrogenation reaction. In addition, benefiting from the great integrity and excellent mechanical strength, monolithic Pd-SAs/CNF catalyst is easy to separate from the reaction system for conducting the subsequent recycling. The cyclic test demonstrates the excellent reusability and stability of monolithic Pd-SAs/CNF catalyst.The discovery of isolated site effect provides a new approach to design highly selective catalysts. And the development of monolithic SACs provides new opportunities to advance the practical applications of single-atom catalysts.
基金supported by the National Natural Science Foundation of China (20773037, 21073058)
文摘Olefins and allylic alcohols have been epoxidized with commercially available hydrogen peroxide (30% H2O2) using a phase transfer catalyst,composed of cetyltrimethylammonium cations and a lacunary-type phosphotungstate anion [PW11O39]7-or the complete Keggin-type heteropolyanion [PW12O40]3-,under two-phase conditions using ethyl acetate as the solvent. It was found that the lacunary-type catalyst showed higher activity and better recyclability than the complete Keggin-type catalyst under the same reaction conditions. 31P NMR spectroscopy and solubility measurements for the two catalysts revealed that the [PW11O39]7-anion had a much faster degradation rate than the [PW12O40]3-anion in an excess of H2O2,which resulted in the formation of more catalytically active species. As a result,the lacunary-type phosphotungstate anion-based catalyst gave a better catalytic performance than the complete Keggin-type anion in ethyl acetate.