期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
三效催化器起燃特性影响因素的仿真研究 被引量:5
1
作者 钟祥麟 于秀敏 +1 位作者 梁晶晶 何玲 《内燃机工程》 EI CAS CSCD 北大核心 2007年第6期73-76,共4页
三效催化器在冷起动期间主要靠排气来加热升温,而发动机控制策略对排温影响很大。利用FIRE仿真软件建立了催化器模型,采用仿真和试验相结合的手段对催化器的起燃特性影响因素进行了研究。结果表明:所建模型能够比较准确地模拟冷起动过... 三效催化器在冷起动期间主要靠排气来加热升温,而发动机控制策略对排温影响很大。利用FIRE仿真软件建立了催化器模型,采用仿真和试验相结合的手段对催化器的起燃特性影响因素进行了研究。结果表明:所建模型能够比较准确地模拟冷起动过程中催化器内的温度场和浓度场变化;延迟发动机的点火提前角可以明显提高进入排气管的温度,从而使催化器快速起燃。 展开更多
关键词 内燃机 汽油机 冷起动 催化器设计 起燃特性 数值模拟
下载PDF
三效催化器与发动机匹配仿真研究
2
作者 梁晶晶 邵忠瑛 《车辆与动力技术》 2008年第4期9-13,共5页
三效催化器是目前解决排放问题的一项比较成功的后处理技术,然而国Ⅲ测试方法使得点燃式发动机冷起动阶段的排放问题更为突出,保证三效催化器快速起燃是发动机与催化器匹配上的关键.在研究手段上,传统的试验方法需做大量的实验来寻找二... 三效催化器是目前解决排放问题的一项比较成功的后处理技术,然而国Ⅲ测试方法使得点燃式发动机冷起动阶段的排放问题更为突出,保证三效催化器快速起燃是发动机与催化器匹配上的关键.在研究手段上,传统的试验方法需做大量的实验来寻找二者的最佳匹配,这种方法消耗大,效率低,本文利用FIRE仿真软件,采用仿真和试验相结合的手段对催化器的起燃特性进行了研究,在充分分析催化器起燃的影响因素后,从发动机控制策略方面,提出了通过改变发动机点火提前角提高排温从而使催化器快速起燃的建议;其次从催化器设计角度,提出了几项改进建议,使催化器快速起燃,为三效催化器与发动机的匹配尝试了一种新的方法. 展开更多
关键词 汽油机 冷起动 催化器设计 数值模拟 匹配
下载PDF
Targeted design of advanced electrocatalysts by machine learning 被引量:7
3
作者 Letian Chen Xu Zhang +3 位作者 An Chen Sai Yao Xu Hu Zhen Zhou 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第1期11-32,共22页
Exploring the production and application of clean energy has always been the core of sustainable development.As a clean and sustainable technology,electrocatalysis has been receiving widespread attention.It is crucial... Exploring the production and application of clean energy has always been the core of sustainable development.As a clean and sustainable technology,electrocatalysis has been receiving widespread attention.It is crucial to achieve efficient,stable and cheap electrocatalysts.However,the traditional“trial and error”method is time-consuming,laborious and costly.In recent years,with the significant increase in computing power,computations have played an important role in electrocatalyst design.Nevertheless,it is still difficult to search for advanced electrocatalysts in the vast chemical space through traditional density functional theory(DFT)computations.Fortunately,the development of machine learning and interdisciplinary integration will inject new impetus into targeted design of electrocatalysts.Machine learning is able to predict electrochemical performances with an accuracy close to DFT.Here we provide an overview of the application of machine learning in electrocatalyst design,including the prediction of structure,thermodynamic properties and kinetic barriers.We also discuss the potential of explicit solvent model combined with machine learning molecular dynamics in this field.Finally,the favorable circumstances and challenges are outlined for the future development of machine learning in electrocatalysis.The studies on electrochemical processes by machine learning will further realize targeted design of high-efficiency electrocatalysts. 展开更多
关键词 ELECTROCATALYST Machine learning Targeted design Thermodynamics properties Kinetic barrier
下载PDF
Generating strongly basic sites on magnetic nano-stirring bars:Multifunctional integrated catalysts for transesterification reaction
4
作者 Chen Gu Tian-Tian Li +4 位作者 Peng Tan Song-Song Peng Yao Jiang Xiao-Qin Liu Lin-Bing Sun 《Science China Materials》 SCIE EI CAS CSCD 2022年第10期2721-2728,共8页
Mass transfer and catalyst recovery are two crucial issues in solid base catalysis,while the cumbersome operation steps and the associated time and energy penalties are still inevitable for conventional catalysts.Achi... Mass transfer and catalyst recovery are two crucial issues in solid base catalysis,while the cumbersome operation steps and the associated time and energy penalties are still inevitable for conventional catalysts.Achieving the technical upgrades through catalyst design is desirable but challenging because of the difficulty in satisfying diverse demands of different steps.In this work,a magnetically responsive solid base catalyst with the rod-like nanostructure was developed.The rod-like solid base catalysts are composed of Fe_(3)O_(4) cores,silica shells and calcium oxide active sites.The functions of magnetic recovery and stirring were integrated into the catalyst,which applies in both the general catalytic processes and microchannel reactors given their nanoscales.When applied to the synthesis of dimethyl carbonate by onestep transesterification of methanol and ethylene carbonate,an apparent enhancement on turnover frequency value(33.1 h^(−1))was observed for nano-stirring compared with that tested without stirring(12.1 h^(−1))within 30 min.The present catalysts may open up new avenues in the development of advanced solid base catalysts. 展开更多
关键词 magnetic responsiveness nano-stirring bars dimethyl carbonate solid base catalyst
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部