Deuterium labeling techniques are widely utilized as efficient tools to study the absorption,distribution,metabolism,and excretion(ADME)of pharmaceuticals.Moreover,deuterium‐labeled drugs are expected to prolong the ...Deuterium labeling techniques are widely utilized as efficient tools to study the absorption,distribution,metabolism,and excretion(ADME)of pharmaceuticals.Moreover,deuterium‐labeled drugs are expected to prolong the half‐life of drug metabolism,enhance the efficacy of drugs,close metabolic sites,and decrease side effects.Thus,there is a rising demand for the practical construction of deuterium‐labeled drugs and their intermediates under mild conditions.This paper timely provides an overview of the recent advances in both photo‐and electro‐catalytic mild and selective deuteration of fine chemicals and pharmaceuticals with low‐cost and sustainable deuterium source.Three types of deuteration strategies are discussed according to the deuteration mode,named deuterium atom transfer strategy,deuterium atom abstraction strategy and deuterated water splitting strategy respectively.The application scope and mechanistic insights are discussed comprehensively.Finally,the perspective on the challenges and future development trends for photo‐and electro‐catalytic deuteration strategies are also presented.展开更多
A room-temperature electrochemical strategy for hydrogenation(deuteration)and reverse dehydrogenation of N-heterocycles over a bifunctional MoNi_(4)electrode is developed,which includes the hydrogenation of quinoxalin...A room-temperature electrochemical strategy for hydrogenation(deuteration)and reverse dehydrogenation of N-heterocycles over a bifunctional MoNi_(4)electrode is developed,which includes the hydrogenation of quinoxaline using H2O as the hydrogen source with 80%Faradaic efficiency and the reverse dehydrogenation of hydrogen-rich 1,2,3,4-tetrahydroquinoxaline with up to 99%yield and selectivity.The in situ generated active hydrogen atom(H^(*))is plausibly involved in the hydrogenation of quinoxaline,where a consecutive hydrogen radical coupled electron transfer pathway is proposed.Notably,the MoNi_(4)alloy exhibits efficient quinoxaline hydrogenation at an overpotential of only 50 mV,owing to its superior water dissociation ability to provide H^(*)in alkaline media.In situ Raman tests indicate that the Ni^(Ⅱ)/Ni^(Ⅲ)redox couple can promote the dehydrogenation process,representing a promising anodic alternative to low-value oxygen evolution.Impressively,electrocatalytic deuteration is easily achieved with up to 99%deuteration ratios using D2O.This method is capable of producing a series of functionalized hydrogenated and deuterated quinoxalines.展开更多
Solvent and kinetic isotope effects in the reaction of oxidative deamination of L-alanine, catalyzed by L-alanine dehydrogenase, AIaDH, (EC 1.4.1.1) were determined using a non-competitive spectroscopic method. The ...Solvent and kinetic isotope effects in the reaction of oxidative deamination of L-alanine, catalyzed by L-alanine dehydrogenase, AIaDH, (EC 1.4.1.1) were determined using a non-competitive spectroscopic method. The progress of the reaction was monitored spectrophotometrically by measuring the increasing absorbance of the reduced form of NADH at 340 nm. L-alanine, stereospecifically labeled with deuterium was synthesized by enzymatic reductive amination of pyruvate in presence of [(4R)-2H]-NADH, which was obtained by deuterium transfer from deuteriated formic acid to NAD~ catalyzed by FDH (formate dehydrogenase) (EC 1.2.1.2). [2-2H]-L-alanine, the product of enzymatic synthesis catalyzed by AIaDH, was obtained with 75% deuterium enrichment and values of isotopic effects were approximated to the values corresponding to 100% of deuterium incorporation. The enzyme AIaDH isolated from Bacillus subtilis shows pro-R stereospecificity, what indicates that hydrogen is exclusively transferred from pro-R position at C-4 of the nicotinamide ring of NADH to C-2 of pyruvate to form L-alanine. Some intrinsic mechanistic details of enzymatic oxidative deamination of L-alanine were discussed using determined numerical values of kinetic and solvent isotope effects on Vmax and Vmax,│KM展开更多
文摘Deuterium labeling techniques are widely utilized as efficient tools to study the absorption,distribution,metabolism,and excretion(ADME)of pharmaceuticals.Moreover,deuterium‐labeled drugs are expected to prolong the half‐life of drug metabolism,enhance the efficacy of drugs,close metabolic sites,and decrease side effects.Thus,there is a rising demand for the practical construction of deuterium‐labeled drugs and their intermediates under mild conditions.This paper timely provides an overview of the recent advances in both photo‐and electro‐catalytic mild and selective deuteration of fine chemicals and pharmaceuticals with low‐cost and sustainable deuterium source.Three types of deuteration strategies are discussed according to the deuteration mode,named deuterium atom transfer strategy,deuterium atom abstraction strategy and deuterated water splitting strategy respectively.The application scope and mechanistic insights are discussed comprehensively.Finally,the perspective on the challenges and future development trends for photo‐and electro‐catalytic deuteration strategies are also presented.
文摘A room-temperature electrochemical strategy for hydrogenation(deuteration)and reverse dehydrogenation of N-heterocycles over a bifunctional MoNi_(4)electrode is developed,which includes the hydrogenation of quinoxaline using H2O as the hydrogen source with 80%Faradaic efficiency and the reverse dehydrogenation of hydrogen-rich 1,2,3,4-tetrahydroquinoxaline with up to 99%yield and selectivity.The in situ generated active hydrogen atom(H^(*))is plausibly involved in the hydrogenation of quinoxaline,where a consecutive hydrogen radical coupled electron transfer pathway is proposed.Notably,the MoNi_(4)alloy exhibits efficient quinoxaline hydrogenation at an overpotential of only 50 mV,owing to its superior water dissociation ability to provide H^(*)in alkaline media.In situ Raman tests indicate that the Ni^(Ⅱ)/Ni^(Ⅲ)redox couple can promote the dehydrogenation process,representing a promising anodic alternative to low-value oxygen evolution.Impressively,electrocatalytic deuteration is easily achieved with up to 99%deuteration ratios using D2O.This method is capable of producing a series of functionalized hydrogenated and deuterated quinoxalines.
文摘Solvent and kinetic isotope effects in the reaction of oxidative deamination of L-alanine, catalyzed by L-alanine dehydrogenase, AIaDH, (EC 1.4.1.1) were determined using a non-competitive spectroscopic method. The progress of the reaction was monitored spectrophotometrically by measuring the increasing absorbance of the reduced form of NADH at 340 nm. L-alanine, stereospecifically labeled with deuterium was synthesized by enzymatic reductive amination of pyruvate in presence of [(4R)-2H]-NADH, which was obtained by deuterium transfer from deuteriated formic acid to NAD~ catalyzed by FDH (formate dehydrogenase) (EC 1.2.1.2). [2-2H]-L-alanine, the product of enzymatic synthesis catalyzed by AIaDH, was obtained with 75% deuterium enrichment and values of isotopic effects were approximated to the values corresponding to 100% of deuterium incorporation. The enzyme AIaDH isolated from Bacillus subtilis shows pro-R stereospecificity, what indicates that hydrogen is exclusively transferred from pro-R position at C-4 of the nicotinamide ring of NADH to C-2 of pyruvate to form L-alanine. Some intrinsic mechanistic details of enzymatic oxidative deamination of L-alanine were discussed using determined numerical values of kinetic and solvent isotope effects on Vmax and Vmax,│KM