针对中国石油化工股份有限公司广州分公司的1.5 Mt/a S Zorb装置,考察了影响装置长周期平稳运行的因素。采取使用国产高通量滤芯及在转剂线上使用耐磨管件,对再生取热盘管进行改造,对闭锁料斗程控阀进行预防性维修等措施解决了装置长周...针对中国石油化工股份有限公司广州分公司的1.5 Mt/a S Zorb装置,考察了影响装置长周期平稳运行的因素。采取使用国产高通量滤芯及在转剂线上使用耐磨管件,对再生取热盘管进行改造,对闭锁料斗程控阀进行预防性维修等措施解决了装置长周期运行瓶颈,实现了在95.06%设计负荷工况下连续平稳运行超过49个月的目标,关键设备反应器过滤器运行超过4 a,期间压差未超过30 kPa。展开更多
To better understand the nature of carbon nanotubes supported Co-Mo catalysts (Co-Mo/CNTs) for selective hydrodesulfurization (HDS) of fluid catalytic cracking (FCC) gasoline, studies are carried out using in si...To better understand the nature of carbon nanotubes supported Co-Mo catalysts (Co-Mo/CNTs) for selective hydrodesulfurization (HDS) of fluid catalytic cracking (FCC) gasoline, studies are carried out using in situ Fourier transform infrared spectroscopy (FT-IR). The catalytic performances of Co-Mo/CNTs catalysts were evaluated with a mixture of cyclohexane, diisobutylene, cyclohexene, 1-octene (60 : 30 : 5 : 5, volume ratio) and thiophene (0.5%, ratio of total weight) as model compounds to simulate FCC gasoline. The HDS experimental results suggested that the HDS activity and selectivity of Co-Mo/CNTs catalysts were affected by Co/Mo ratio; the optimal Co/Mo atomic ratio is about 0.4, and the optimum reaction temperature is 260 ℃. The in situ FT-IR studies revealed that 1-octene can be completely saturated at 200 ℃. In the FT-IR spectra of diisobutylene, the characteristic absorption peak around 3081 cm^-1 for the stretching vibration peak of =C-H bond was still clear at 320 ℃ indicating that diisobutylene is difficult to be hydrogenated. As for the thiophene, no characteristic absorption peak could be found around 3092 cm^-1 and 835 cm^-1 when the reaction temperature was raised to 280 ℃, indicating that thiophene had been completely hydrodesulfurized. On the basis of FT-IR results, it can be deduced that thiophene HDS reaction occurred mainly through direct hydrogenolysis route, whereas thiophene HDS and diisobutylene hydrogenation reaction over Co-Mo/CNTs catalysts might occur on two different kinds of active sites.展开更多
基金National Basic Research Program of China ("973"Program,No.2004CB217807)
文摘To better understand the nature of carbon nanotubes supported Co-Mo catalysts (Co-Mo/CNTs) for selective hydrodesulfurization (HDS) of fluid catalytic cracking (FCC) gasoline, studies are carried out using in situ Fourier transform infrared spectroscopy (FT-IR). The catalytic performances of Co-Mo/CNTs catalysts were evaluated with a mixture of cyclohexane, diisobutylene, cyclohexene, 1-octene (60 : 30 : 5 : 5, volume ratio) and thiophene (0.5%, ratio of total weight) as model compounds to simulate FCC gasoline. The HDS experimental results suggested that the HDS activity and selectivity of Co-Mo/CNTs catalysts were affected by Co/Mo ratio; the optimal Co/Mo atomic ratio is about 0.4, and the optimum reaction temperature is 260 ℃. The in situ FT-IR studies revealed that 1-octene can be completely saturated at 200 ℃. In the FT-IR spectra of diisobutylene, the characteristic absorption peak around 3081 cm^-1 for the stretching vibration peak of =C-H bond was still clear at 320 ℃ indicating that diisobutylene is difficult to be hydrogenated. As for the thiophene, no characteristic absorption peak could be found around 3092 cm^-1 and 835 cm^-1 when the reaction temperature was raised to 280 ℃, indicating that thiophene had been completely hydrodesulfurized. On the basis of FT-IR results, it can be deduced that thiophene HDS reaction occurred mainly through direct hydrogenolysis route, whereas thiophene HDS and diisobutylene hydrogenation reaction over Co-Mo/CNTs catalysts might occur on two different kinds of active sites.