The FCC unit with addition of various inventories of the FP-DSN type sulfur transfer additive was tested in a commercial scale. The effect of the sulfur transfer additive was analyzed by investigating the indicators r...The FCC unit with addition of various inventories of the FP-DSN type sulfur transfer additive was tested in a commercial scale. The effect of the sulfur transfer additive was analyzed by investigating the indicators related with the regenerator flue gas composition,the dry gas composition before desulfurization,the LPG composition before desulfurization,the acid gas,and the yield of gasoline and diesel. The test results indicated that the sulfur was trans ferred from the feed stream into the dry gas,LPG and acid gas,and the sulfur transfer effect was obvious only when the inventory of sulfur transfer additive exceeded over 2.0% of total FCC catalyst inventory.展开更多
A new silica sol binder was obtained by mixing the acid-modified aluminium sulfate and water glass. The effect of SiO2 concentration in sodium silicate, pH value and polymerization was investigated. The new silica sol...A new silica sol binder was obtained by mixing the acid-modified aluminium sulfate and water glass. The effect of SiO2 concentration in sodium silicate, pH value and polymerization was investigated. The new silica sol binder, which possessed abundant pore volume and suitable acid amount, was an ideal component for preparing cracking catalyst. As a result, the corresponding catalyst comprising the new binder showed excellent performance. Compared with the reference sample, the liquefied petroleum gas(LPG) and propylene yield obtained over this catalyst increased by 3.49 and 1.20 percentage points, respectively. The perfect pore structure and suitable Lewis acid amount of new silica sol were the possible reason leading to its outstanding performance.展开更多
The behavior of antimony oxidation in the solution of sodium thioantimonite was studied in the presence of catalytic agents. The catalytic effects of the respective addition of cupric sulfate, sodium tartrate, potassi...The behavior of antimony oxidation in the solution of sodium thioantimonite was studied in the presence of catalytic agents. The catalytic effects of the respective addition of cupric sulfate, sodium tartrate, potassium permanganate, phenol, 1,2 dihydroxybenzene and their combination on the oxidation of sodium thioantimonite were investigated. A pilot test was carried out. The results show that the respective use of sodium tartrate, cupric sulfate, potassium permanganate, phenol and 1,2 dihydroxybenzene have little catalytic effect on the oxidation of sodium thioantimonite. However there exists obvious catalytic oxidation by the combination of 0.25 g/L 1,2 dihydroxybenzene, 0.5 g/L potassium permanganate and 1.0 g/L phenol. Moreover, high blast intensity, the increase of temperature and NaOH concentration favor the oxidation of antimony. The oxidation process of antimony has such advantages as quick reaction and low operation costs. The results of the pilot test are consistent with those of laboratory experiments.展开更多
An efficient reduction system of benzaldehyde with hydrogen under ambient pressure was developed using facile NiO catalyst. The non-aromatic solvents such as cyclohexane, tetrahydrofuran (THF) and n-hexane, and the ad...An efficient reduction system of benzaldehyde with hydrogen under ambient pressure was developed using facile NiO catalyst. The non-aromatic solvents such as cyclohexane, tetrahydrofuran (THF) and n-hexane, and the addi-tive with strong basicity e.g. KOH, were necessary for smooth conversion of the substrate. That the catalyst can be recov-ered and reused for nine times without loss of catalytic activity indicates that this catalyst is a recyclable one for benzal-dehyde reduction.展开更多
Liquid phase oxidation of toluene is an environmental benign route for the production of benzoic acid.In a φ48mm bubble column reactor,the commercial process of toluene liquid phase oxidation was conducted with Co(CH...Liquid phase oxidation of toluene is an environmental benign route for the production of benzoic acid.In a φ48mm bubble column reactor,the commercial process of toluene liquid phase oxidation was conducted with Co(CH3COO)2.4H2O as catalyst.The Co2+ concentration [Co2+] was determined by extraction spectrophotometry and hereby the Co3+ concentration [Co3+] was obtained by mass balance.The results showed that [Co3+] reached the maximum at about 25-30min.[Co3+] increased with increasing Co catalyst amount at total Co concentration<150 mg.L-1 of toluene.The conversion of toluene,yield and selectivity of benzoic acid increased with the increasing [Co3+/Co2+] max.A high [Co3+] and a high [Co3+]/[Co2+] ratio are beneficial to the reaction.展开更多
文摘The FCC unit with addition of various inventories of the FP-DSN type sulfur transfer additive was tested in a commercial scale. The effect of the sulfur transfer additive was analyzed by investigating the indicators related with the regenerator flue gas composition,the dry gas composition before desulfurization,the LPG composition before desulfurization,the acid gas,and the yield of gasoline and diesel. The test results indicated that the sulfur was trans ferred from the feed stream into the dry gas,LPG and acid gas,and the sulfur transfer effect was obvious only when the inventory of sulfur transfer additive exceeded over 2.0% of total FCC catalyst inventory.
基金the Department of Science and Technology Management of PetroChina for providing financial support
文摘A new silica sol binder was obtained by mixing the acid-modified aluminium sulfate and water glass. The effect of SiO2 concentration in sodium silicate, pH value and polymerization was investigated. The new silica sol binder, which possessed abundant pore volume and suitable acid amount, was an ideal component for preparing cracking catalyst. As a result, the corresponding catalyst comprising the new binder showed excellent performance. Compared with the reference sample, the liquefied petroleum gas(LPG) and propylene yield obtained over this catalyst increased by 3.49 and 1.20 percentage points, respectively. The perfect pore structure and suitable Lewis acid amount of new silica sol were the possible reason leading to its outstanding performance.
文摘The behavior of antimony oxidation in the solution of sodium thioantimonite was studied in the presence of catalytic agents. The catalytic effects of the respective addition of cupric sulfate, sodium tartrate, potassium permanganate, phenol, 1,2 dihydroxybenzene and their combination on the oxidation of sodium thioantimonite were investigated. A pilot test was carried out. The results show that the respective use of sodium tartrate, cupric sulfate, potassium permanganate, phenol and 1,2 dihydroxybenzene have little catalytic effect on the oxidation of sodium thioantimonite. However there exists obvious catalytic oxidation by the combination of 0.25 g/L 1,2 dihydroxybenzene, 0.5 g/L potassium permanganate and 1.0 g/L phenol. Moreover, high blast intensity, the increase of temperature and NaOH concentration favor the oxidation of antimony. The oxidation process of antimony has such advantages as quick reaction and low operation costs. The results of the pilot test are consistent with those of laboratory experiments.
基金Supported by the National Natural Science Foundation of China (Nos.20576045, 20306009 and 202225620).
文摘An efficient reduction system of benzaldehyde with hydrogen under ambient pressure was developed using facile NiO catalyst. The non-aromatic solvents such as cyclohexane, tetrahydrofuran (THF) and n-hexane, and the addi-tive with strong basicity e.g. KOH, were necessary for smooth conversion of the substrate. That the catalyst can be recov-ered and reused for nine times without loss of catalytic activity indicates that this catalyst is a recyclable one for benzal-dehyde reduction.
基金Supported by the National Natural Science Foundation of China (20576081, 20736009) and the Ph.D. Programs Foundation of Ministry of Education of China (20070610128).
文摘Liquid phase oxidation of toluene is an environmental benign route for the production of benzoic acid.In a φ48mm bubble column reactor,the commercial process of toluene liquid phase oxidation was conducted with Co(CH3COO)2.4H2O as catalyst.The Co2+ concentration [Co2+] was determined by extraction spectrophotometry and hereby the Co3+ concentration [Co3+] was obtained by mass balance.The results showed that [Co3+] reached the maximum at about 25-30min.[Co3+] increased with increasing Co catalyst amount at total Co concentration<150 mg.L-1 of toluene.The conversion of toluene,yield and selectivity of benzoic acid increased with the increasing [Co3+/Co2+] max.A high [Co3+] and a high [Co3+]/[Co2+] ratio are beneficial to the reaction.