The catalytic combustion technology for treating waste gases exiting from wastewater treatment system and oil separators in petrochemical enterprises was introduced in this article. Commercial application of this tech...The catalytic combustion technology for treating waste gases exiting from wastewater treatment system and oil separators in petrochemical enterprises was introduced in this article. Commercial application of this technology showed that the process "desulfurization and total hydrocarbon concentration homogenizationcatalytic combustion" and the associated WSH-1 combustion catalyst were suitable for treating volatile organic gases emitted from the oil separators, floatation tanks, inlet water-collecting well, waste oil tanks, etc. The commercial unit was equipped with an advanced auto-control system, featuring a simple operation and low energy consumption with good treatment effect. The purified gases could meet the national emission standard.展开更多
The purpose of this study is to compare the part-load performance of a lean burn catalytic combustion gas turbine (LBCCGT) system in three different control modes: varying fuel, bleeding off the fuel mixture flow afte...The purpose of this study is to compare the part-load performance of a lean burn catalytic combustion gas turbine (LBCCGT) system in three different control modes: varying fuel, bleeding off the fuel mixture flow after the compressor and varying rotational speed. The conversions of methane species for chemical process are considered. A 1D heterogeneous plug flow model was utilized to analyze the system performance. The actual turbomachinery components were designed and predicted performance maps were applied to system performance research. The part-load characteristics under three control strategies were numerically investigated. The main results show that: the combustor inlet temperature is a significant factor that can significantly affect the part-load characteristics of the LBCCGT system; the rotational speed control mode can provide the best performance characteristics for part-load operations; the operation range of the bleed off mode is narrower than that of the speed control mode and wider than that of the fuel only mode; with reduced power, methane does not achieve full conversion over the reactor at the fuel only control mode, which will not warrant stable operation of the turbine system; the thermal efficiency of the LBCCGT system at fuel only control strategy is higher than that at bleed off control strategy within the operation range.展开更多
文摘The catalytic combustion technology for treating waste gases exiting from wastewater treatment system and oil separators in petrochemical enterprises was introduced in this article. Commercial application of this technology showed that the process "desulfurization and total hydrocarbon concentration homogenizationcatalytic combustion" and the associated WSH-1 combustion catalyst were suitable for treating volatile organic gases emitted from the oil separators, floatation tanks, inlet water-collecting well, waste oil tanks, etc. The commercial unit was equipped with an advanced auto-control system, featuring a simple operation and low energy consumption with good treatment effect. The purified gases could meet the national emission standard.
基金supported by the National Natural Science Foundation of China(Grant No.51206160)
文摘The purpose of this study is to compare the part-load performance of a lean burn catalytic combustion gas turbine (LBCCGT) system in three different control modes: varying fuel, bleeding off the fuel mixture flow after the compressor and varying rotational speed. The conversions of methane species for chemical process are considered. A 1D heterogeneous plug flow model was utilized to analyze the system performance. The actual turbomachinery components were designed and predicted performance maps were applied to system performance research. The part-load characteristics under three control strategies were numerically investigated. The main results show that: the combustor inlet temperature is a significant factor that can significantly affect the part-load characteristics of the LBCCGT system; the rotational speed control mode can provide the best performance characteristics for part-load operations; the operation range of the bleed off mode is narrower than that of the speed control mode and wider than that of the fuel only mode; with reduced power, methane does not achieve full conversion over the reactor at the fuel only control mode, which will not warrant stable operation of the turbine system; the thermal efficiency of the LBCCGT system at fuel only control strategy is higher than that at bleed off control strategy within the operation range.