Pd/LaxPbyMnOz, Pd/C, Pd/molecular sieve and Pd-heteropoly acid catalysts for direct synthesis of diphenyl carbonate (DPC) by heterogeneous catalytic reaction were compared and the results of DPC synthesis indicated th...Pd/LaxPbyMnOz, Pd/C, Pd/molecular sieve and Pd-heteropoly acid catalysts for direct synthesis of diphenyl carbonate (DPC) by heterogeneous catalytic reaction were compared and the results of DPC synthesis indicated that the catalyst Pd/LaxPbyMnOz had higher activity. The Pd/LaxPbyMnOz catalyst and the support was characterized by XRD, SEM and TEM, the main phase was Lao.szPbo.asMnOa and the average diameter could be about 25.4nm. The optimuna conditions for synthesis of DPC with Pd/LasPbyMnOz were determined by orthogonal experiments and the experimental results showed that reaction temperature was the first factor of effect on the selectivity and yield of DPC, and the concentration of O2 in gas phase also had significant effect on selectivity of DPC. The optimum reaction conditions were catalyst/phenol mass ratio l to 50, pressure 4.5MPa, volume concentration of O2 25%, reaction temperature 60℃ and reaction time 4 h. The maximum yield and average selectivity could reach 13% and 97% respectively in the batch operation.展开更多
Development of the high activity,promoter‐free catalysts for carbonyl sulfide(COS)hydrolysis is important for the efficient utilization of various feedstocks.In this study,the Cu‐based metal‐organic framework HKUST...Development of the high activity,promoter‐free catalysts for carbonyl sulfide(COS)hydrolysis is important for the efficient utilization of various feedstocks.In this study,the Cu‐based metal‐organic framework HKUST‐1is synthesized by a simple and mild anodic‐dissolution electrochemical method.The physical and chemical properties of the samples are characterized by several techniques,including scanning electron microscopy,X‐ray diffraction,Brunauer‐Emmett‐Teller analysis and X‐ray photoelectron spectroscopy.The results reveal that the synthesis voltage plays a crucial role in controlling the morphology of the resulting HKUST‐1.The obtained samples function as novel catalysts for the hydrolysis of COS.A high efficiency,approaching100%,can be achieved for the conversion of COS at150oC over the optimal HKUST‐1synthesized at25V.This is significantly higher than that of the sample prepared by the traditional hydrothermal method.Additionally,the effects of the water temperature and the flow velocity on the hydrolysis of COS are also investigated in detail.Finally,a possible reaction pathway of COS hydrolysis over HKUST‐1is also proposed.This work represents the first example of MOFs applied to the catalytic hydrolysis of COS.The results presented in this study can be anticipated to give a feasible impetus to design novel catalysts for removing the sulfur‐containing compounds.展开更多
The novel solid acid with both sulfonic and carbonyl acid groups has been synthesized from 3-((2-sulfoethoxy) carbonyl)acrylic acid and tetraethyl orthosilicate(TEOS). The catalytic activities were investigated throug...The novel solid acid with both sulfonic and carbonyl acid groups has been synthesized from 3-((2-sulfoethoxy) carbonyl)acrylic acid and tetraethyl orthosilicate(TEOS). The catalytic activities were investigated through the acetalization. The results showed that the novel solid acid was very efficient for the reactions with the high yields. The high acidity, high stability and reusability were the key feature of the novel solid acid. Moreover, the sulfonic and carbonyl acid groups could cooperate during the catalytic process, which improved its catalytic activities. The catalyst shows recyclability, and hold great potential for replacement of homogeneous catalysts.展开更多
The magnetic perovskite-supported palladium catalysts Pd/Lal_xPbxMnO3 (x = 0.2-0.7) were prepared and used for the oxidative carbonylation of phenol to diphenyl carbonate. The synthesized catalysts were characterize...The magnetic perovskite-supported palladium catalysts Pd/Lal_xPbxMnO3 (x = 0.2-0.7) were prepared and used for the oxidative carbonylation of phenol to diphenyl carbonate. The synthesized catalysts were characterized by the X-ray diffraction (XRD), surface area measurement BET, vibration sample magnetometer (VSM) and tem- perature-programmed reduction (TPR). The experimental results demonstrated that the magnetic Pd/La1-xPbxMnO3 (x = 0.4-0.5) obtain relative better catalytic activity. It can be explained by higher concentration of oxygen vacan- cies, larger amount and better mobility of lattice oxygen of their support. Furthermore, these samples possess suffi- cient saturated magnetization. Thus, Pd/La1-xPbxMnO3 (x = 0.4-0.5) may be suitable for operation in the magneti- cally stabilized bed reactor.展开更多
Glycerol carbonate was synthesized by the oxidative carbonylation of glycerol catalyzed by the commercial Pd/C with the aid of NaI. High conversion of glycerol (82.2%), selectivity to glycerol carbonate (〉99%), a...Glycerol carbonate was synthesized by the oxidative carbonylation of glycerol catalyzed by the commercial Pd/C with the aid of NaI. High conversion of glycerol (82.2%), selectivity to glycerol carbonate (〉99%), and TOF (900 h-1) were obtained under the conditions of 5 MPa (Pco:Po2 = 2:1), 140 C, 2 h. The highly active palladium species were generated in situ by dissolution from the carbon support and stabilized by re-deposition onto the support surface after the reaction was finished. Palladium dissolution and re-deposition were crucial and inherent parts of the catalytic cycle, which involved heterogeneous reactions. This Pd/C catalyst could be recycled and efficiently reused for four times with a gradual decrease in activity. Moreover, the in- fluences of various parameters, e.g., types of catalysts, solvents, additives, reaction temperature, pressure, and time on the conversion of glycerol were investigated. A reaction mechanism was proposed for oxidative carbonylation of glycerol to glyc- erol carbonate.展开更多
基金National Natural Science Foundation of China(No.20076036Tianjin University C1 National Laboratory Project
文摘Pd/LaxPbyMnOz, Pd/C, Pd/molecular sieve and Pd-heteropoly acid catalysts for direct synthesis of diphenyl carbonate (DPC) by heterogeneous catalytic reaction were compared and the results of DPC synthesis indicated that the catalyst Pd/LaxPbyMnOz had higher activity. The Pd/LaxPbyMnOz catalyst and the support was characterized by XRD, SEM and TEM, the main phase was Lao.szPbo.asMnOa and the average diameter could be about 25.4nm. The optimuna conditions for synthesis of DPC with Pd/LasPbyMnOz were determined by orthogonal experiments and the experimental results showed that reaction temperature was the first factor of effect on the selectivity and yield of DPC, and the concentration of O2 in gas phase also had significant effect on selectivity of DPC. The optimum reaction conditions were catalyst/phenol mass ratio l to 50, pressure 4.5MPa, volume concentration of O2 25%, reaction temperature 60℃ and reaction time 4 h. The maximum yield and average selectivity could reach 13% and 97% respectively in the batch operation.
基金supported by the National Natural Science Foundation of China (21603034,21576051)the National High Technology Research and Development Program of China (863 Program,2015AA03A402)~~
文摘Development of the high activity,promoter‐free catalysts for carbonyl sulfide(COS)hydrolysis is important for the efficient utilization of various feedstocks.In this study,the Cu‐based metal‐organic framework HKUST‐1is synthesized by a simple and mild anodic‐dissolution electrochemical method.The physical and chemical properties of the samples are characterized by several techniques,including scanning electron microscopy,X‐ray diffraction,Brunauer‐Emmett‐Teller analysis and X‐ray photoelectron spectroscopy.The results reveal that the synthesis voltage plays a crucial role in controlling the morphology of the resulting HKUST‐1.The obtained samples function as novel catalysts for the hydrolysis of COS.A high efficiency,approaching100%,can be achieved for the conversion of COS at150oC over the optimal HKUST‐1synthesized at25V.This is significantly higher than that of the sample prepared by the traditional hydrothermal method.Additionally,the effects of the water temperature and the flow velocity on the hydrolysis of COS are also investigated in detail.Finally,a possible reaction pathway of COS hydrolysis over HKUST‐1is also proposed.This work represents the first example of MOFs applied to the catalytic hydrolysis of COS.The results presented in this study can be anticipated to give a feasible impetus to design novel catalysts for removing the sulfur‐containing compounds.
基金Supported by the Chinese National General Administration of Quality Supervision,Inspection and Quarantine(2012IK048,2011IK041)the National Natural Science Foundation of China(21103111)
文摘The novel solid acid with both sulfonic and carbonyl acid groups has been synthesized from 3-((2-sulfoethoxy) carbonyl)acrylic acid and tetraethyl orthosilicate(TEOS). The catalytic activities were investigated through the acetalization. The results showed that the novel solid acid was very efficient for the reactions with the high yields. The high acidity, high stability and reusability were the key feature of the novel solid acid. Moreover, the sulfonic and carbonyl acid groups could cooperate during the catalytic process, which improved its catalytic activities. The catalyst shows recyclability, and hold great potential for replacement of homogeneous catalysts.
基金Supported by the Key Program of National Natural Science Foundation of China(20936003)the Foundation for Innovation Research Groups of the Natural Science Foundation of Hubei Province(2008CDA009)
文摘The magnetic perovskite-supported palladium catalysts Pd/Lal_xPbxMnO3 (x = 0.2-0.7) were prepared and used for the oxidative carbonylation of phenol to diphenyl carbonate. The synthesized catalysts were characterized by the X-ray diffraction (XRD), surface area measurement BET, vibration sample magnetometer (VSM) and tem- perature-programmed reduction (TPR). The experimental results demonstrated that the magnetic Pd/La1-xPbxMnO3 (x = 0.4-0.5) obtain relative better catalytic activity. It can be explained by higher concentration of oxygen vacan- cies, larger amount and better mobility of lattice oxygen of their support. Furthermore, these samples possess suffi- cient saturated magnetization. Thus, Pd/La1-xPbxMnO3 (x = 0.4-0.5) may be suitable for operation in the magneti- cally stabilized bed reactor.
基金supported by the National Natural Science Foundation of China(20976101)the Program for Key Science&Technology Innovation Team of Shaanxi Province(2012KCT-21)the Program for Changjiang Scholars and Innovative Research Team in University of China(IRT1070)
文摘Glycerol carbonate was synthesized by the oxidative carbonylation of glycerol catalyzed by the commercial Pd/C with the aid of NaI. High conversion of glycerol (82.2%), selectivity to glycerol carbonate (〉99%), and TOF (900 h-1) were obtained under the conditions of 5 MPa (Pco:Po2 = 2:1), 140 C, 2 h. The highly active palladium species were generated in situ by dissolution from the carbon support and stabilized by re-deposition onto the support surface after the reaction was finished. Palladium dissolution and re-deposition were crucial and inherent parts of the catalytic cycle, which involved heterogeneous reactions. This Pd/C catalyst could be recycled and efficiently reused for four times with a gradual decrease in activity. Moreover, the in- fluences of various parameters, e.g., types of catalysts, solvents, additives, reaction temperature, pressure, and time on the conversion of glycerol were investigated. A reaction mechanism was proposed for oxidative carbonylation of glycerol to glyc- erol carbonate.