Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways....Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways.Herein,our study introduces a strategy employing palladium amides,harnessing their unique reactivity control,to direct the selective carbonylation of amines for the targeted synthesis of urea and oxamide derivatives.The palladium amide structure was elucidated using single-crystal X-ray diffraction.Controlled experiments and cyclic voltammetry studies further elucidate that the oxidation of palladium amide or its insertion into a carbonyl group diverges into distinct pathways.By employing sodium percarbonate as an eco-friendly oxidant and base,we have successfully constructed a switchable carbonylation system co-catalyzed by palladium and iodide under room temperature.The utilizing strategy in this study not only facilitates effective control over reaction selectivity but also mitigates the risk of explosions,a critical safety concern in traditional carbonylation methods.展开更多
The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exch...The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exchange process. The results showed that the catalytic activity was obviously affected by the calcination temperature. The maximal DME conversion of 97.2% and the MA selectivity of 97.9% were obtained over the Cu/HMOR calcined at 430 ℃ under conditions of 210 ℃, 1.5 MPa, and GSHV of 4883 h^-1. The obtained Cu/HMOR catalysts were characterized by powder X-ray diffraction, N2 absorption, NH3 temperature program desorption, CO temperature program desorption, and Raman techniques. Proper calcination temperature was effective to promote copper ions migration and diffusion, and led the support HMOR to possess more acid activity sites, which exhibited the complete decomposing of copper nitrate, large surface area and optimum micropore structure, more amount of CO adsorption site and proper amount of weak acid centers.展开更多
NaY and ion exchanged NaNH4Y zeolite with NH4NO3 were used as the support to prepare CuY cata‐lysts by a high temperature anhydrous interaction between the support and copper (II) acety‐lacetonate Cu(acac)2. The...NaY and ion exchanged NaNH4Y zeolite with NH4NO3 were used as the support to prepare CuY cata‐lysts by a high temperature anhydrous interaction between the support and copper (II) acety‐lacetonate Cu(acac)2. The catalysts were used for the oxidative carbonylation of methanol to dime‐thyl carbonate (DMC) at atmospheric pressure. The textural and acidic properties of NaNH4Y zeolite and the CuY catalysts were investigated by X‐ray diffraction, scanning electron microscopy, N2 ad‐sorption‐desorption, temperature programmed reduction of H2, X‐ray photoelectron spectroscopy and temperature programmed desorption of NH3. With increasing NH4NO3 concentration, the NH4+exchange degree increased while the crystallinity of the zeolite remained intact. Crystalline CuO was formed when the NH4+exchange degree of NaNH4Y was low, and the corresponding CuY catalyst showed low catalytic activity. With increasing of the NH4+exchange degree of NaNH4Y, the content of surface bound Cu+active centers increased and the catalytic activity of the corresponding CuY catalyst also increased. The surface bound Cu+content reached its maximum when the NH4+ex‐change degree of NaNH4Y reached towards saturation. The CuY exhibited optimal catalytic activity with 267.3 mg/(g·h) space time yield of DMC, 6.9%conversion of methanol, 68.5%selectivity of DMC.展开更多
Dimethyl ether carbonylation to methyl acetate was comparatively investigated over mor- denite supported copper (Cu/HMOR) catalysts prepared by different methods including evaporation, urea hydrolysis, incipient wet...Dimethyl ether carbonylation to methyl acetate was comparatively investigated over mor- denite supported copper (Cu/HMOR) catalysts prepared by different methods including evaporation, urea hydrolysis, incipient wetness impregnation and ion-exchange. The results showed that Cu/HMOR prepared via iron-exchange method exhibited the highest catalytic activity due to the synergistic effect of active-site metal and acidic molecular sieve support. Conversion of 95.3% and methyl acetate selectivity of 94.9% were achieved under conditions of 210℃, 1.5 MPa, and GSHV of 4883 h-1. The catalysts were characterized by nitrogen absorption, X-ray diffraction, NH3 temperature program desorption, and CO temperature program desorption techniques. It was found that Cu/HMOR prepared by ion-exchange method possessed high surface area, moderate strong acid centers, and CO adsorption centers, which improved catalytic performance for the reaction of CO insertion to dimethyl ether.展开更多
An efficient reduction system of benzaldehyde with hydrogen under ambient pressure was developed using facile NiO catalyst. The non-aromatic solvents such as cyclohexane, tetrahydrofuran (THF) and n-hexane, and the ad...An efficient reduction system of benzaldehyde with hydrogen under ambient pressure was developed using facile NiO catalyst. The non-aromatic solvents such as cyclohexane, tetrahydrofuran (THF) and n-hexane, and the addi-tive with strong basicity e.g. KOH, were necessary for smooth conversion of the substrate. That the catalyst can be recov-ered and reused for nine times without loss of catalytic activity indicates that this catalyst is a recyclable one for benzal-dehyde reduction.展开更多
Pd/LaxPbyMnOz, Pd/C, Pd/molecular sieve and Pd-heteropoly acid catalysts for direct synthesis of diphenyl carbonate (DPC) by heterogeneous catalytic reaction were compared and the results of DPC synthesis indicated th...Pd/LaxPbyMnOz, Pd/C, Pd/molecular sieve and Pd-heteropoly acid catalysts for direct synthesis of diphenyl carbonate (DPC) by heterogeneous catalytic reaction were compared and the results of DPC synthesis indicated that the catalyst Pd/LaxPbyMnOz had higher activity. The Pd/LaxPbyMnOz catalyst and the support was characterized by XRD, SEM and TEM, the main phase was Lao.szPbo.asMnOa and the average diameter could be about 25.4nm. The optimuna conditions for synthesis of DPC with Pd/LasPbyMnOz were determined by orthogonal experiments and the experimental results showed that reaction temperature was the first factor of effect on the selectivity and yield of DPC, and the concentration of O2 in gas phase also had significant effect on selectivity of DPC. The optimum reaction conditions were catalyst/phenol mass ratio l to 50, pressure 4.5MPa, volume concentration of O2 25%, reaction temperature 60℃ and reaction time 4 h. The maximum yield and average selectivity could reach 13% and 97% respectively in the batch operation.展开更多
Acid-catalyzed dehydration of alcohols has been widely employed for the synthesis of alkenes. However, activated alcohols when employed as substrates in dehydration reactions are often pla-gued by the lack of alkene s...Acid-catalyzed dehydration of alcohols has been widely employed for the synthesis of alkenes. However, activated alcohols when employed as substrates in dehydration reactions are often pla-gued by the lack of alkene selectivity. In this work, the reaction system can be significantly improved through enhancing the performance of Lewis acid catalysts in the dehydration of activated alcohols by combining with a Lewis base. Observations of the reaction mechanism revealed that the Lewis base component might have changed the reaction rate order. Although both the principal and side reaction rates decreased, the effect was markedly more observed on the latter reaction. Therefore, the selectivity of the dehydration reaction was improved. On the basis of this observation, a new route to synthesize 2-cinnamyl-1,3-dicarbonyl compounds was developed by using 2-aryl-3,4- di-hydropyran as a starting substrate in the presence of a Lewis acid/Lewis base combined catalyst system.展开更多
基金The National Key Research and Development Program of Ministry of Science and Technology(No.2022YFA1504602)Natural Science Foundation of Jiangsu Province(No.BK20211094)National Natural Science Foundation of China(No.22302214,21972152,U22B20137).
文摘Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways.Herein,our study introduces a strategy employing palladium amides,harnessing their unique reactivity control,to direct the selective carbonylation of amines for the targeted synthesis of urea and oxamide derivatives.The palladium amide structure was elucidated using single-crystal X-ray diffraction.Controlled experiments and cyclic voltammetry studies further elucidate that the oxidation of palladium amide or its insertion into a carbonyl group diverges into distinct pathways.By employing sodium percarbonate as an eco-friendly oxidant and base,we have successfully constructed a switchable carbonylation system co-catalyzed by palladium and iodide under room temperature.The utilizing strategy in this study not only facilitates effective control over reaction selectivity but also mitigates the risk of explosions,a critical safety concern in traditional carbonylation methods.
基金This work was supported by the National Natural Science Foundation of China (No.51006110 and No.51276183) and the National Natural Research Foundation of China/Japan Science and Technology Agency (No.51161140331).
文摘The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exchange process. The results showed that the catalytic activity was obviously affected by the calcination temperature. The maximal DME conversion of 97.2% and the MA selectivity of 97.9% were obtained over the Cu/HMOR calcined at 430 ℃ under conditions of 210 ℃, 1.5 MPa, and GSHV of 4883 h^-1. The obtained Cu/HMOR catalysts were characterized by powder X-ray diffraction, N2 absorption, NH3 temperature program desorption, CO temperature program desorption, and Raman techniques. Proper calcination temperature was effective to promote copper ions migration and diffusion, and led the support HMOR to possess more acid activity sites, which exhibited the complete decomposing of copper nitrate, large surface area and optimum micropore structure, more amount of CO adsorption site and proper amount of weak acid centers.
基金supported by the National Natural Science Foundation of China (21276169)~~
文摘NaY and ion exchanged NaNH4Y zeolite with NH4NO3 were used as the support to prepare CuY cata‐lysts by a high temperature anhydrous interaction between the support and copper (II) acety‐lacetonate Cu(acac)2. The catalysts were used for the oxidative carbonylation of methanol to dime‐thyl carbonate (DMC) at atmospheric pressure. The textural and acidic properties of NaNH4Y zeolite and the CuY catalysts were investigated by X‐ray diffraction, scanning electron microscopy, N2 ad‐sorption‐desorption, temperature programmed reduction of H2, X‐ray photoelectron spectroscopy and temperature programmed desorption of NH3. With increasing NH4NO3 concentration, the NH4+exchange degree increased while the crystallinity of the zeolite remained intact. Crystalline CuO was formed when the NH4+exchange degree of NaNH4Y was low, and the corresponding CuY catalyst showed low catalytic activity. With increasing of the NH4+exchange degree of NaNH4Y, the content of surface bound Cu+active centers increased and the catalytic activity of the corresponding CuY catalyst also increased. The surface bound Cu+content reached its maximum when the NH4+ex‐change degree of NaNH4Y reached towards saturation. The CuY exhibited optimal catalytic activity with 267.3 mg/(g·h) space time yield of DMC, 6.9%conversion of methanol, 68.5%selectivity of DMC.
文摘Dimethyl ether carbonylation to methyl acetate was comparatively investigated over mor- denite supported copper (Cu/HMOR) catalysts prepared by different methods including evaporation, urea hydrolysis, incipient wetness impregnation and ion-exchange. The results showed that Cu/HMOR prepared via iron-exchange method exhibited the highest catalytic activity due to the synergistic effect of active-site metal and acidic molecular sieve support. Conversion of 95.3% and methyl acetate selectivity of 94.9% were achieved under conditions of 210℃, 1.5 MPa, and GSHV of 4883 h-1. The catalysts were characterized by nitrogen absorption, X-ray diffraction, NH3 temperature program desorption, and CO temperature program desorption techniques. It was found that Cu/HMOR prepared by ion-exchange method possessed high surface area, moderate strong acid centers, and CO adsorption centers, which improved catalytic performance for the reaction of CO insertion to dimethyl ether.
基金Supported by the National Natural Science Foundation of China (Nos.20576045, 20306009 and 202225620).
文摘An efficient reduction system of benzaldehyde with hydrogen under ambient pressure was developed using facile NiO catalyst. The non-aromatic solvents such as cyclohexane, tetrahydrofuran (THF) and n-hexane, and the addi-tive with strong basicity e.g. KOH, were necessary for smooth conversion of the substrate. That the catalyst can be recov-ered and reused for nine times without loss of catalytic activity indicates that this catalyst is a recyclable one for benzal-dehyde reduction.
基金National Natural Science Foundation of China(No.20076036Tianjin University C1 National Laboratory Project
文摘Pd/LaxPbyMnOz, Pd/C, Pd/molecular sieve and Pd-heteropoly acid catalysts for direct synthesis of diphenyl carbonate (DPC) by heterogeneous catalytic reaction were compared and the results of DPC synthesis indicated that the catalyst Pd/LaxPbyMnOz had higher activity. The Pd/LaxPbyMnOz catalyst and the support was characterized by XRD, SEM and TEM, the main phase was Lao.szPbo.asMnOa and the average diameter could be about 25.4nm. The optimuna conditions for synthesis of DPC with Pd/LasPbyMnOz were determined by orthogonal experiments and the experimental results showed that reaction temperature was the first factor of effect on the selectivity and yield of DPC, and the concentration of O2 in gas phase also had significant effect on selectivity of DPC. The optimum reaction conditions were catalyst/phenol mass ratio l to 50, pressure 4.5MPa, volume concentration of O2 25%, reaction temperature 60℃ and reaction time 4 h. The maximum yield and average selectivity could reach 13% and 97% respectively in the batch operation.
基金supported by the National Natural Science Foundation of China (21173089 and 21373093)the Fundamental Research Funds for the Central Universities of China (2014ZZGH019)the Cooperative Innovation Center of Hubei Province
文摘Acid-catalyzed dehydration of alcohols has been widely employed for the synthesis of alkenes. However, activated alcohols when employed as substrates in dehydration reactions are often pla-gued by the lack of alkene selectivity. In this work, the reaction system can be significantly improved through enhancing the performance of Lewis acid catalysts in the dehydration of activated alcohols by combining with a Lewis base. Observations of the reaction mechanism revealed that the Lewis base component might have changed the reaction rate order. Although both the principal and side reaction rates decreased, the effect was markedly more observed on the latter reaction. Therefore, the selectivity of the dehydration reaction was improved. On the basis of this observation, a new route to synthesize 2-cinnamyl-1,3-dicarbonyl compounds was developed by using 2-aryl-3,4- di-hydropyran as a starting substrate in the presence of a Lewis acid/Lewis base combined catalyst system.