Semiconductor photocatalysis can be operated over a narrow pH range for wastewater treatment. In this study, a simulated solar-light-mediated bismuth tungstate (SSL/Bi2WO6) process is found to be effective for norflox...Semiconductor photocatalysis can be operated over a narrow pH range for wastewater treatment. In this study, a simulated solar-light-mediated bismuth tungstate (SSL/Bi2WO6) process is found to be effective for norfloxacin degradation over a narrow pH range. To broaden the operating pH range of the SSL/Bi2WO6 process, an NH4+ buffer system and an Fe3+ salt were introduced under extremely basic and acidic pH conditions, respectively. The NH4+ buffer system continuously supplied hydroxyl ions to generate ·OH radicals and prevented acidification of the solution, resulting in improved norfloxacin removal and mineralization removal under alkaline conditions. In contrast, the Fe3+ salt offered an additional homogeneous photo-sensitization pathway. The former treatment assisted in norfloxacin decay and the latter increased the collision frequency between the photo-generated hole and hydroxyl ions. Moreover, the effect of parameters such as pH and Fe3+ dosage was optimized.展开更多
Isooctane is a promising gasoline additive that could be produced by dimerization of isobutene(IB) with subsequent hydrogenation.In this work,the dimerization of IB has been carried out in a batch reactor over a tempe...Isooctane is a promising gasoline additive that could be produced by dimerization of isobutene(IB) with subsequent hydrogenation.In this work,the dimerization of IB has been carried out in a batch reactor over a temperature range of 338-383 K in the presence of laboratory prepared Ni/Al_2O_3 as a catalyst and n-pentane as solvent.The influence of various parameters such as temperature,catalyst loading and initial concentration of IB was examined.A Langmuir-Hinshelwood kinetic model of IB dimerization was established and the parameters were estimated on the basis of the measured data.The feasibility of oligomerization of IB based on the reactive distillation was simulated in ASPEN PLUS using the kinetics developed.The simulation results showed that the catalyst of Ni/Al_2O_3 had higher selectivity to diisobutene(DIB) and slightly lower conversion of IB than ion exchange resin in the absence of polar substances.展开更多
Single-walled carbon nanotubes (SWNTs) have been grown on a silica-supported monometallic nickel (Ni) catalyst at temperatures ranging from as low as 450℃to 800℃. Different spectroscopic techniques, such as Rama...Single-walled carbon nanotubes (SWNTs) have been grown on a silica-supported monometallic nickel (Ni) catalyst at temperatures ranging from as low as 450℃to 800℃. Different spectroscopic techniques, such as Raman, photoluminescence emission (PLE), and ultra violet-visible-near infrared (UV-vis-NIR) absorption spectroscopy were used to evaluate file diameter and quality of the SWNTs grown over the Ni catalyst at different temperatures. The analysis revealed that high quality SWNTs with a very narrow diameter distribution were obtained at a growth temperature of 500 ℃. In the PLE and absorption spectra, differences were observed between the SWNTs grown oil Ni and those grown on cobalt (Co). This result expands the potential of growing a specific (n, m) tube species with relatively high abundance by tuning the catalyst composition. Furthermore, the prerequisites for the low temperature growth of SWNTs over a monometallic transition metal catalyst have been elucidated.展开更多
Electrocatalytic hydrogenation(ECH)enables the sustainable production of chemicals under ambient condition;however,suffers from serious competition with hydrogen(H2)evolution and the use of precious metals as electroc...Electrocatalytic hydrogenation(ECH)enables the sustainable production of chemicals under ambient condition;however,suffers from serious competition with hydrogen(H2)evolution and the use of precious metals as electrocatalysts.Herein,molybdenum disulfide is for the first time developed as an efficient and noble-metal-free catalyst for ECH via in situ intercalation of ammonia or alkyl-amine cations.This interlayer engineering regulates phase transition(2H→1 T),and effectively ameliorates electronic configurations and surface hydrophobicity to promote the ECH of biomass-derived oxygenates,while prohibiting H2 evolution.The optimal one intercalated by dimethylamine(MoS_(2)-DMA)is capable of hydrogenating furfural(FAL)to furfuryl alcohol with high Faradaic efficiency of 86.3%–73.3%and outstanding selectivity of>95.0%at−0.25 to−0.65 V(vs.RHE),outperforming MoS_(2) and other conventional metals.Such prominent performance stems from the enhanced chemisorption and surface hydrophobicity.The chemisorption of H intermediate and FAL,synchronously strengthened on the edge-sites of MoS_(2)-DMA,accelerates the surface elementary step following Langmuir-Hinshelwood mechanism.Moreover,the improved hydrophobicity benefits FAL affinity to overcome diffusion limitation.Discovering the effective modulation of MoS_(2) from a typical H2 evolution electrocatalyst to a promising candidate for ECH,this study broadens the scope to exploit catalysts used for electrochemical synthesis.展开更多
基金supported by the National Science Foundation of China(41877481,41503102)the open project of the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,Chinese Academy of Science(SKLLQG1729)+2 种基金the China Postdoctoral Science Foundation(2018M643669)the Fundamental Research Funds for the Central Universities(2018249)the "Hundred Talent Program" of the Chinese Academy of Sciences~~
文摘Semiconductor photocatalysis can be operated over a narrow pH range for wastewater treatment. In this study, a simulated solar-light-mediated bismuth tungstate (SSL/Bi2WO6) process is found to be effective for norfloxacin degradation over a narrow pH range. To broaden the operating pH range of the SSL/Bi2WO6 process, an NH4+ buffer system and an Fe3+ salt were introduced under extremely basic and acidic pH conditions, respectively. The NH4+ buffer system continuously supplied hydroxyl ions to generate ·OH radicals and prevented acidification of the solution, resulting in improved norfloxacin removal and mineralization removal under alkaline conditions. In contrast, the Fe3+ salt offered an additional homogeneous photo-sensitization pathway. The former treatment assisted in norfloxacin decay and the latter increased the collision frequency between the photo-generated hole and hydroxyl ions. Moreover, the effect of parameters such as pH and Fe3+ dosage was optimized.
基金Supported by the State key Development Program for Basic Research of China(2012CB720502)the National High Technology Research and Development(2012AA040306)+1 种基金the National Natural Science Foundation of China(21076074)the Shanghai Pujiang Talents Program(10PJ1402400)
文摘Isooctane is a promising gasoline additive that could be produced by dimerization of isobutene(IB) with subsequent hydrogenation.In this work,the dimerization of IB has been carried out in a batch reactor over a temperature range of 338-383 K in the presence of laboratory prepared Ni/Al_2O_3 as a catalyst and n-pentane as solvent.The influence of various parameters such as temperature,catalyst loading and initial concentration of IB was examined.A Langmuir-Hinshelwood kinetic model of IB dimerization was established and the parameters were estimated on the basis of the measured data.The feasibility of oligomerization of IB based on the reactive distillation was simulated in ASPEN PLUS using the kinetics developed.The simulation results showed that the catalyst of Ni/Al_2O_3 had higher selectivity to diisobutene(DIB) and slightly lower conversion of IB than ion exchange resin in the absence of polar substances.
文摘Single-walled carbon nanotubes (SWNTs) have been grown on a silica-supported monometallic nickel (Ni) catalyst at temperatures ranging from as low as 450℃to 800℃. Different spectroscopic techniques, such as Raman, photoluminescence emission (PLE), and ultra violet-visible-near infrared (UV-vis-NIR) absorption spectroscopy were used to evaluate file diameter and quality of the SWNTs grown over the Ni catalyst at different temperatures. The analysis revealed that high quality SWNTs with a very narrow diameter distribution were obtained at a growth temperature of 500 ℃. In the PLE and absorption spectra, differences were observed between the SWNTs grown oil Ni and those grown on cobalt (Co). This result expands the potential of growing a specific (n, m) tube species with relatively high abundance by tuning the catalyst composition. Furthermore, the prerequisites for the low temperature growth of SWNTs over a monometallic transition metal catalyst have been elucidated.
基金supported by the National Key Research and Development Program of China (2018YFA0209402)the National Natural Science Foundation of China (21773093)
文摘Electrocatalytic hydrogenation(ECH)enables the sustainable production of chemicals under ambient condition;however,suffers from serious competition with hydrogen(H2)evolution and the use of precious metals as electrocatalysts.Herein,molybdenum disulfide is for the first time developed as an efficient and noble-metal-free catalyst for ECH via in situ intercalation of ammonia or alkyl-amine cations.This interlayer engineering regulates phase transition(2H→1 T),and effectively ameliorates electronic configurations and surface hydrophobicity to promote the ECH of biomass-derived oxygenates,while prohibiting H2 evolution.The optimal one intercalated by dimethylamine(MoS_(2)-DMA)is capable of hydrogenating furfural(FAL)to furfuryl alcohol with high Faradaic efficiency of 86.3%–73.3%and outstanding selectivity of>95.0%at−0.25 to−0.65 V(vs.RHE),outperforming MoS_(2) and other conventional metals.Such prominent performance stems from the enhanced chemisorption and surface hydrophobicity.The chemisorption of H intermediate and FAL,synchronously strengthened on the edge-sites of MoS_(2)-DMA,accelerates the surface elementary step following Langmuir-Hinshelwood mechanism.Moreover,the improved hydrophobicity benefits FAL affinity to overcome diffusion limitation.Discovering the effective modulation of MoS_(2) from a typical H2 evolution electrocatalyst to a promising candidate for ECH,this study broadens the scope to exploit catalysts used for electrochemical synthesis.