Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operat...Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operating point and process constraints, which is related to the margins of design variables. Because of various ciisturbances in chemical processes, some distances must be reserved for fluctuations of process variables and the optimum operating point is not on some process constraints. Thus the benefit of steady-state optimization can not be fully achied(ed while that of dynamic optimization can be really achieved. In this study, the steady-state optimizationand dynamic optimization are used, and the potential benefit-is divided into achievable benefit for profit and unachievable benefit for control. The fluid catalytic cracking unit (FCCU) is used for case study. With the analysis on how the margins of design variables influence the economic benefit and control performance, the bottlenecks of process design are found and appropriate control structure can be selected.展开更多
A FCC mechanism model was used to predict the effects of propylene promoter in a 3.0 Mt/a FCCU. The FCC mechanism model was developed based on one set of commercial FCC data without using the promoter, and was modifie...A FCC mechanism model was used to predict the effects of propylene promoter in a 3.0 Mt/a FCCU. The FCC mechanism model was developed based on one set of commercial FCC data without using the promoter, and was modified by using another set of commercial FCC data with 3m% promoter in the catalyst inventory, and the calculations by means of this simulation model were performed to predict the data of the FCC unit containing 4m% promoter in the catalyst inventory. The test results showed that the calculated values agreed well with the data obtained from the commercial FCC unit, in which the deviations of calculated product yields versus the actual product yields at the commercial FCC unit were equal to 1.74 percentage points for gasoline, 2.59 percentage points for diesel, 1.50 percentage points for dry gas and LPG, and 0.28 percentage points for coke. The proposed method regarding the development of a simulation model and modifications to the model for commercial FCC unit was feasible.展开更多
基金Supported by the National Natural Science Foundation of China(21006127)the National Basic Research Program of China(2012CB720500)the Science Foundation of China University of Petroleum(KYJJ2012-05-28)
文摘Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operating point and process constraints, which is related to the margins of design variables. Because of various ciisturbances in chemical processes, some distances must be reserved for fluctuations of process variables and the optimum operating point is not on some process constraints. Thus the benefit of steady-state optimization can not be fully achied(ed while that of dynamic optimization can be really achieved. In this study, the steady-state optimizationand dynamic optimization are used, and the potential benefit-is divided into achievable benefit for profit and unachievable benefit for control. The fluid catalytic cracking unit (FCCU) is used for case study. With the analysis on how the margins of design variables influence the economic benefit and control performance, the bottlenecks of process design are found and appropriate control structure can be selected.
文摘A FCC mechanism model was used to predict the effects of propylene promoter in a 3.0 Mt/a FCCU. The FCC mechanism model was developed based on one set of commercial FCC data without using the promoter, and was modified by using another set of commercial FCC data with 3m% promoter in the catalyst inventory, and the calculations by means of this simulation model were performed to predict the data of the FCC unit containing 4m% promoter in the catalyst inventory. The test results showed that the calculated values agreed well with the data obtained from the commercial FCC unit, in which the deviations of calculated product yields versus the actual product yields at the commercial FCC unit were equal to 1.74 percentage points for gasoline, 2.59 percentage points for diesel, 1.50 percentage points for dry gas and LPG, and 0.28 percentage points for coke. The proposed method regarding the development of a simulation model and modifications to the model for commercial FCC unit was feasible.