中国石油独山子石化公司催化裂化(FCC)烟气脱硫脱硝装置采用选择性催化还原工艺(SCR)。针对生产过程中出现的因省煤器堵塞而导致余热锅炉压降缓慢升高的问题,采取降低烟机负荷,提高余热锅炉省煤器烟气温度至NH_4HSO_4露点温度(约231℃)...中国石油独山子石化公司催化裂化(FCC)烟气脱硫脱硝装置采用选择性催化还原工艺(SCR)。针对生产过程中出现的因省煤器堵塞而导致余热锅炉压降缓慢升高的问题,采取降低烟机负荷,提高余热锅炉省煤器烟气温度至NH_4HSO_4露点温度(约231℃)以上的方法加以解决。工业应用表明:当烟机入口蝶阀由90%关至45%,排烟温度由200℃提高到260℃时,SCR反应器入口和出口压力分别下降了3.11,3.25 k Pa;在提高余热锅炉排烟温度运行15 d后,高、中和低温省煤器压降依次下降0.6,1.9,0.5 k Pa,锅炉总压降下降3.0 k Pa。展开更多
A series of different transition metals(V,Co,Cr,Mn,Fe,Ni,Cu and Zn) promoted H-ZSM-5 catalysts were prepared by impregnation method and characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and tra...A series of different transition metals(V,Co,Cr,Mn,Fe,Ni,Cu and Zn) promoted H-ZSM-5 catalysts were prepared by impregnation method and characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The catalytic activity of these catalysts was evaluated for the selective catalytic reduction(SCR) of NO with NH_3 as reductant in the presence of oxygen.The results revealed that the catalytic activity of Cu-ZSM-5 nanocatalyst for NO conversion to N_2 was 80%at 300 ℃,which was the best among various promoted metals.Design of experiments(DOEs) with Taguchi method was employed to optimize NH_3-SCR process parameters such as NH_3/NO ratio,O_2 concentration,and gas hourly space velocity(GHSV) over Cu-ZSM-5 nanocatalyst at 250 and 300 ℃.Results showed that the most important parameter in NH_3-SCR of NO is O_2 concentration;followed by NH_3/NO ratio and GHSV has little importance.The NO conversion to N_2 of 63.1%and 94.86%was observed at 250℃ and 300℃,respectively under the obtained optimum conditions.展开更多
文摘中国石油独山子石化公司催化裂化(FCC)烟气脱硫脱硝装置采用选择性催化还原工艺(SCR)。针对生产过程中出现的因省煤器堵塞而导致余热锅炉压降缓慢升高的问题,采取降低烟机负荷,提高余热锅炉省煤器烟气温度至NH_4HSO_4露点温度(约231℃)以上的方法加以解决。工业应用表明:当烟机入口蝶阀由90%关至45%,排烟温度由200℃提高到260℃时,SCR反应器入口和出口压力分别下降了3.11,3.25 k Pa;在提高余热锅炉排烟温度运行15 d后,高、中和低温省煤器压降依次下降0.6,1.9,0.5 k Pa,锅炉总压降下降3.0 k Pa。
基金financial support from University of Tabriz and Iranian Nanotechnology Initiative
文摘A series of different transition metals(V,Co,Cr,Mn,Fe,Ni,Cu and Zn) promoted H-ZSM-5 catalysts were prepared by impregnation method and characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The catalytic activity of these catalysts was evaluated for the selective catalytic reduction(SCR) of NO with NH_3 as reductant in the presence of oxygen.The results revealed that the catalytic activity of Cu-ZSM-5 nanocatalyst for NO conversion to N_2 was 80%at 300 ℃,which was the best among various promoted metals.Design of experiments(DOEs) with Taguchi method was employed to optimize NH_3-SCR process parameters such as NH_3/NO ratio,O_2 concentration,and gas hourly space velocity(GHSV) over Cu-ZSM-5 nanocatalyst at 250 and 300 ℃.Results showed that the most important parameter in NH_3-SCR of NO is O_2 concentration;followed by NH_3/NO ratio and GHSV has little importance.The NO conversion to N_2 of 63.1%and 94.86%was observed at 250℃ and 300℃,respectively under the obtained optimum conditions.