The project"Development of the energy saving type GS-11catalyst for dehydrogenation of ethylbenzene and its com-mercial testing"jointly undertaken by the SINOPEC
Synthesis,characterization of Co_3O_4 and Ag-Co_3O_4 composites and evaluation of their photo-catalytic activities towards photo-degradation of aqueous solution of rhodamine B dye under irradiation of visible light ha...Synthesis,characterization of Co_3O_4 and Ag-Co_3O_4 composites and evaluation of their photo-catalytic activities towards photo-degradation of aqueous solution of rhodamine B dye under irradiation of visible light have been described in this paper.Co_3O_4 was prepared by solid phase mechano chemical process using Co(NO_3)_2·6H_2O and NH_4 HCO_3 as precursor materials.Ag was deposited on Co_3O_4 from AgNO_3 using Calotropis gigantea extract as reducing agent.XRD,SEM and FTIR were used for characterization of prepared composites.Photo-catalytic efficiencies of as-prepared Co_3O_4 and Ag-Co_3O_4 were evaluated for aqueous phase photo-degradation of rhodamine B.It was found that deposition of Ag on Co_3O_4 highly enhanced the photo-catalytic activity of Co_3O_4.Photo-catalytic degradation followed the Eley–Rideal mechanism.About 100% and 91% photo-degradation of 40 ml dye solution achieved at 313 K in 90 and 120 min over 0.05 g of Ag-Co_3O_4 as photo-catalyst using 100 and 200 mg·L^(-1) as initial concentration of dye respectively.展开更多
Using carbon felt, polytetrafluoroethylene latex and powder catalyst to assembly a light energy conversion device, the photocatalytic activity of catalyst 2.0%WO3-TiO2 (2%WO3 compounding TiO2) with oxygen vacancies ...Using carbon felt, polytetrafluoroethylene latex and powder catalyst to assembly a light energy conversion device, the photocatalytic activity of catalyst 2.0%WO3-TiO2 (2%WO3 compounding TiO2) with oxygen vacancies was studied through the water splitting for O2 evolution, using a high pressure mercury lamp as the light source and Fe^3+ as the electron acceptor in two different devices: an ordinary photolysis device with catalyst powder suspending through a magnetic stirrer and a self-assembly light energy conversion device. The results show that after 12 h irradiation, the photocatalytic activity of 2.0%WO3-TiO2 with oxygen vacancies in the self-assembly light energy conversion device is higher than that of the ordinary photolysis device, and the amount of oxygen evolution is about 12 and 9 mmol/L respectively in these two devices. After 12 h, the rates of 02 evolution are slow in each device and the photocatalyst almost loses the photoactivity in the ordinary photolysis device. So, compared with the ordinary photocatalytic device, the rate of oxygen evolution and the life time of the catalyst are improved in the self-assembly light energy conversion device.展开更多
A series of H3PW12O40/BiVO4 composite with different H3PW12O40 loadings were prepared using a hydrothermal and impregnation method. The prepared composites were characterized by XRD, Raman, SEM, XPS, and DRS technique...A series of H3PW12O40/BiVO4 composite with different H3PW12O40 loadings were prepared using a hydrothermal and impregnation method. The prepared composites were characterized by XRD, Raman, SEM, XPS, and DRS techniques. The bandgap of the composite was narrower compared with the as-prepared pure BiVO4 . As a novel photocatalytic material, the photocatalytic performance of the H3PW12O40/BiVO4 composite was investigated by the degradation of methylene blue (MB) dye solution under visible light irradiation and compared with that of pure BiVO4 . The results revealed that the introduction of H3PW12O40 could improve the photocatalytic performance and different concentrations of H3PW12O40 resulted in different photocatalytic activities. The highest activity was obtained by the sample with a loading HPW concentration of 10 wt%. The reason for the enhanced photocatalytic activities of H3PW12O40/BiVO4 samples was also discussed in this paper. Moreover, the H3PW12O40/BiVO4 composites retained the catalytic activity after four repeated experiments.展开更多
Highly photocatalytically active cobalt-doped ZnO (ZnO:Co) nanorods have been prepared by a facile hydrothermal process. X-ray diffraction, X-ray photoelectron spectroscopy, Raman scattering and UV-vis diffuse refl...Highly photocatalytically active cobalt-doped ZnO (ZnO:Co) nanorods have been prepared by a facile hydrothermal process. X-ray diffraction, X-ray photoelectron spectroscopy, Raman scattering and UV-vis diffuse reflectance spectroscopy confirmed that the dopant ions substitute for some of the lattice zinc ions, and furthermore, that Co〉 and Co〉 ions coexist. The as-prepared ZnO:Co samples have an extended light absorption range compared with pure ZnO and showed highly efficient photocatalytic activity, only requiring 60 rain to decompose -93% of alizarin red dye under visible light irradiation (λ 〉 420 nm), The photophysical mechanism of the visible photocatalytic activity was investigated with the help of surface photovoltage spectroscopy. The results indicated that a strong electronic interaction between the Co and ZnO was present, and that the incorporation of Co promoted the charge separation and enhanced the charge transfer ability and, at the same time, effectively inhibited the recombination of photogenerated charge carriers in ZnO, resulting in high visible light photocatalytic activity.展开更多
文摘The project"Development of the energy saving type GS-11catalyst for dehydrogenation of ethylbenzene and its com-mercial testing"jointly undertaken by the SINOPEC
基金The World Academy of Sciences(TWAS)(13-301 RG/MSN/AS_C) is acknowledged for financial support under COMSTECH-TWAS Grants Program
文摘Synthesis,characterization of Co_3O_4 and Ag-Co_3O_4 composites and evaluation of their photo-catalytic activities towards photo-degradation of aqueous solution of rhodamine B dye under irradiation of visible light have been described in this paper.Co_3O_4 was prepared by solid phase mechano chemical process using Co(NO_3)_2·6H_2O and NH_4 HCO_3 as precursor materials.Ag was deposited on Co_3O_4 from AgNO_3 using Calotropis gigantea extract as reducing agent.XRD,SEM and FTIR were used for characterization of prepared composites.Photo-catalytic efficiencies of as-prepared Co_3O_4 and Ag-Co_3O_4 were evaluated for aqueous phase photo-degradation of rhodamine B.It was found that deposition of Ag on Co_3O_4 highly enhanced the photo-catalytic activity of Co_3O_4.Photo-catalytic degradation followed the Eley–Rideal mechanism.About 100% and 91% photo-degradation of 40 ml dye solution achieved at 313 K in 90 and 120 min over 0.05 g of Ag-Co_3O_4 as photo-catalyst using 100 and 200 mg·L^(-1) as initial concentration of dye respectively.
基金Project(2010CL04) supported by the Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, ChinaProject(K-081025) supported by State Key Laboratory Breeding Base of Photocatalysis,Fuzhou University,China
文摘Using carbon felt, polytetrafluoroethylene latex and powder catalyst to assembly a light energy conversion device, the photocatalytic activity of catalyst 2.0%WO3-TiO2 (2%WO3 compounding TiO2) with oxygen vacancies was studied through the water splitting for O2 evolution, using a high pressure mercury lamp as the light source and Fe^3+ as the electron acceptor in two different devices: an ordinary photolysis device with catalyst powder suspending through a magnetic stirrer and a self-assembly light energy conversion device. The results show that after 12 h irradiation, the photocatalytic activity of 2.0%WO3-TiO2 with oxygen vacancies in the self-assembly light energy conversion device is higher than that of the ordinary photolysis device, and the amount of oxygen evolution is about 12 and 9 mmol/L respectively in these two devices. After 12 h, the rates of 02 evolution are slow in each device and the photocatalyst almost loses the photoactivity in the ordinary photolysis device. So, compared with the ordinary photocatalytic device, the rate of oxygen evolution and the life time of the catalyst are improved in the self-assembly light energy conversion device.
基金the Foundation of State Key Laboratory of Pollution Control and Resource Reuse of Chinathe China Postdoctoral Science Foundation funded project (2012M511254)+3 种基金the National Natural Science Foundation of China (51008154)the Natural Science Research Project of Jiangsu Province's Education Department (12KJD610004)the Scientific Innovation Research Foundation of Graduate Student of Jiangsu Province (CXZZ12-0063)the Scientific Research Foundation of Graduate Student of Nanjing University (2012CL10)
文摘A series of H3PW12O40/BiVO4 composite with different H3PW12O40 loadings were prepared using a hydrothermal and impregnation method. The prepared composites were characterized by XRD, Raman, SEM, XPS, and DRS techniques. The bandgap of the composite was narrower compared with the as-prepared pure BiVO4 . As a novel photocatalytic material, the photocatalytic performance of the H3PW12O40/BiVO4 composite was investigated by the degradation of methylene blue (MB) dye solution under visible light irradiation and compared with that of pure BiVO4 . The results revealed that the introduction of H3PW12O40 could improve the photocatalytic performance and different concentrations of H3PW12O40 resulted in different photocatalytic activities. The highest activity was obtained by the sample with a loading HPW concentration of 10 wt%. The reason for the enhanced photocatalytic activities of H3PW12O40/BiVO4 samples was also discussed in this paper. Moreover, the H3PW12O40/BiVO4 composites retained the catalytic activity after four repeated experiments.
基金Acknowledgements We are grateful to the National Basic Research Program of China (973 Program, No. 2007CB613303) for financial support. This work was also supported by the National Natural Science Foundation of China (No. 20873053).
文摘Highly photocatalytically active cobalt-doped ZnO (ZnO:Co) nanorods have been prepared by a facile hydrothermal process. X-ray diffraction, X-ray photoelectron spectroscopy, Raman scattering and UV-vis diffuse reflectance spectroscopy confirmed that the dopant ions substitute for some of the lattice zinc ions, and furthermore, that Co〉 and Co〉 ions coexist. The as-prepared ZnO:Co samples have an extended light absorption range compared with pure ZnO and showed highly efficient photocatalytic activity, only requiring 60 rain to decompose -93% of alizarin red dye under visible light irradiation (λ 〉 420 nm), The photophysical mechanism of the visible photocatalytic activity was investigated with the help of surface photovoltage spectroscopy. The results indicated that a strong electronic interaction between the Co and ZnO was present, and that the incorporation of Co promoted the charge separation and enhanced the charge transfer ability and, at the same time, effectively inhibited the recombination of photogenerated charge carriers in ZnO, resulting in high visible light photocatalytic activity.