The formations and transformations of the chemical bonds of reactants and intermediates on cata- lyst surfaces occur in conjunction with the evolution of heat during catalytic reactions. Measure- ment of this evolved ...The formations and transformations of the chemical bonds of reactants and intermediates on cata- lyst surfaces occur in conjunction with the evolution of heat during catalytic reactions. Measure- ment of this evolved heat is helpful in terms of understanding the nature of the interactions be- tween the catalyst and the adsorbed species, and provides insights into the reactivity of the catalyst. Although various techniques have previously been applied to assessments of evolved heat, direct measurements using a Tian-Calvet microcalorimeter are currently the most reliable method for this purpose. In this review, we summarize the relationship between the adsorption/reaction energetics determined by microcalorimetry and the reactivities of supported catalysts, and examine the im- portant role of microcalorimetry in understanding catalytic performance from the energetic point of view.展开更多
Perovskite ZnTiO3 was prepared through a new method which contained a hydrothermal process for the preparation of titanate nanotubes and an ion-exchange process.The titanate nanotubes were inferred to be H2Ti3O7·...Perovskite ZnTiO3 was prepared through a new method which contained a hydrothermal process for the preparation of titanate nanotubes and an ion-exchange process.The titanate nanotubes were inferred to be H2Ti3O7·3H2O.X-ray diffraction(XRD)result revealed the presence of cubic perovskite phase of ZnTiO3.The unique chain-like morphology of ZnTiO3 was observed by scanning electron microscopy(SEM) and transmission electron microscopy(TEM).UV-Vis diffusive reflection spectra of ZnTiO3indicated that the absorbance obviously increased in the visible light region.The degradation rate of methyl orange solution(15 mg/L)reached 95.3%over ZnTiO3(0.3 g/L) after 20 min xenon light irradiation,which was higher than that using the commercial catalyst P25 under the same reaction condition.The degradation kinetic results follow the first-order equation and the rate constant is 0.1020.展开更多
In order to solve the serious leaching problem of supported heteropoly acid catalysts in polar reaction media, 12-molybdophosphoric acid encapsulated in the supercage of Cs^+-exchanged Y zeolite was prepared by the ...In order to solve the serious leaching problem of supported heteropoly acid catalysts in polar reaction media, 12-molybdophosphoric acid encapsulated in the supercage of Cs^+-exchanged Y zeolite was prepared by the "ship in the bottle" synthesis. The influence of ion-exchange conditions and the synthesis parameters on the encaosulation of PMo12 were investigated. The obtained solid sample was characterized by X-ray diffraction (XRD), 31p magic angle spin nuclear magnetic resonance (MAS NMR) and Fourier Transform Infrared Spectroscopy (FT-IR), and its catalytic activity in the esterification of acetic acid and n-butanol was tested. The ion-exchange time, concentration of aqueous Cs^+ solution, pH value, and amount of Mo added in the synthesis mixture were revealed to influence the encapsulation very remarkably. Under the optimal conditions, 12-molybdophosphoric acid could be successfully encapsulated in the supercage of CsY zeolite, and the samples showed considerable catalytic activity and excellent reusability in the esterification reaction.展开更多
Zeolites with ordered porous structure of molecular size are widely employed as commercial adsorbents and catalysts.On the other hand,the zeolite matrix is regarded as an ideal scaffold for hosting coordinatively unsa...Zeolites with ordered porous structure of molecular size are widely employed as commercial adsorbents and catalysts.On the other hand,the zeolite matrix is regarded as an ideal scaffold for hosting coordinatively unsaturated sites.Remarkable achievements have been made dealing with the construction,characterization and catalytic applications of coordinatively unsaturated sites in zeolite matrix.Herein,a literature overview of recent progresses on this important topic is presented from the specific view of coordination chemistry.Different strategies to construction coordinatively unsaturated sites in zeolite matrix,in zeolite framework or extraframework positions,are first introduced and their characteristics are compared.Then,spectroscopic techniques to determine the existing states of cation sites and their transformations in zeolite matrix are discussed.In the last section,the catalytic applications of coordinatively unsaturated sites in zeolite matrix for various important chemical transformations are summarized.展开更多
Partially or fully regenerated catalytic cracking catalysts were prepared by gasifying the coke deposited on coked catalysts with a gaseous mixture of oxygen and steam in a fixed fluidized bed (FFB). The resultant s...Partially or fully regenerated catalytic cracking catalysts were prepared by gasifying the coke deposited on coked catalysts with a gaseous mixture of oxygen and steam in a fixed fluidized bed (FFB). The resultant samples were characterized by different methods such as the nitrogen adsorption-desorption analysis, the X-ray diffractometry, the infrared spectroscopy, the ammonia temperature-programmed desorption (NH3-TPD) method, the X-ray fluorescence (XRF) analysis, the transmission electron microscopy and energy dispersive X-ray spectroscopy (TEM-EDX), the thermal-gravimetric analysis (TGA) and the differential thermal analysis (DTA). The results showed that exposure of catalyst to steam for about 10 minutes at temperature ≥ 800 ℃ could not cause too much destruction of the catalysts, and an amount of coke equating to about 0.27 m% was enough to block approximately all acid sites in micro-pores of the zeolite catalyst. Coke didn't show equal reactivity during coke burning-off that could be accelerated by the catalytic action of nearby metal atoms. However, when the carbon content on the catalyst reached about 2.44 m%, the catalytic action of metals on the catalyst was not evident. The severe thermal and hydrothermal environment during exposure of the catalyst to steam at a temperature in the range of about 860--880 ℃ for 30 minutes could lead to collapse of pore structure and transformation of crystal phase and consequently decrease of the surface area and acid amount on the catalyst.展开更多
A series of the Pt-Sn/SBA-15 catalysts were prepared and their properties characterized by using X-ray powder diffraction (XRD), N2 adsorption-desorption, high resolution transmission electron microscope, X-ray phot...A series of the Pt-Sn/SBA-15 catalysts were prepared and their properties characterized by using X-ray powder diffraction (XRD), N2 adsorption-desorption, high resolution transmission electron microscope, X-ray photoelectron spectroscopy (XPS) and H2-temperature programmed reduction. Their performances in long chain alkane dehydrogenation were evaluated in a fixed-bed microreactor with dodecane as a model alkane. The results indicated that SBA-15 maintained the well-order mesoporous structure during the reaction. The performance of the catalyst was found not dominated by its textural properties, but by the molar ratio of Sn to Pt which governed the degree of Sn reduction. Owing to the highest degree of Sn reduction, 1% (by mass) Pt-1.8% (by mass) Sn/SBA-15 showed the best catalytic activity. At 0.1 MPa and 470℃, the molar ratio of hydrogen to alkane at 4, and liquid hourly space velocity (LHSV) 20 h^-1, the dodecane conversion is 10%, and the dodecene selectivity is about 70%.展开更多
Supported and colloidal single‐atom catalysts(SACs),which possess excellent catalytic properties,are particularly important in both fundamental studies and practical applications.The progress made in the preparation ...Supported and colloidal single‐atom catalysts(SACs),which possess excellent catalytic properties,are particularly important in both fundamental studies and practical applications.The progress made in the preparation methods,characterization,catalytic performances and mechanisms of SACs anchored to metal oxides,two‐dimensional materials and the surface of metal nanoclusters(NCs)are reviewed.The different techniques for SAC fabrication,including conventional solution methods based on co‐precipitation,incipient wetness co‐impregnation,and the chemical vapor deposition method,as well as the newer atom layer deposition(ALD)and galvanic replacement methods,are summarized.The main results from experimental and theoretical studies of various catalytic reactions over SACs,including oxidation reactions,hydrogenation,water gas shift,photocatalytic H2evolution and electrochemical reactions,are also discussed.Moreover,the electronic properties of the single atoms and their interactions with the supports are described to assist in understanding the origin of the high catalytic activity and selectivity of SACs.Finally,possible future research directions of SACs and their applications are proposed.展开更多
Electrochemical energy conversion technologies involving processes such as water splitting and O_(2)/CO_(2) reduction,provide promising solutions for addressing global energy scarcity and minimizing adverse environmen...Electrochemical energy conversion technologies involving processes such as water splitting and O_(2)/CO_(2) reduction,provide promising solutions for addressing global energy scarcity and minimizing adverse environmental impact.However,due to a lack of an in-depth understanding of the reaction mechanisms and the nature of the active sites,further advancement of these techniques has been limited by the development of efficient and robust catalysts.Therefore,in situ characterization of these electrocatalytic processes under working conditions is essential.In this review,recent applications of in situ Raman spectroscopy and X-ray absorption spectroscopy for various nano-and single-atom catalysts in energy-related reactions are summarized.Notable cases are highlighted,including the capture of oxygen-containing intermediate species formed during the reduction of oxygen and oxidation of hydrogen,and the detection of catalyst structural transformations occurring with the change in potential during the evolution of oxygen and reduction of CO_(2).Finally,the challenges and outlook for advancing in situ spectroscopic technologies to gain a deeper fundamental understanding of these energy-related electrocatalytic processes are discussed.展开更多
Bisphenols containing long aliphatic hydrocarbon side chains were synthesized by the condensation of phenol with aldehyde or ketone in the presence of heteropolyacid. Their structures were characterized by IR, 1H NMR,...Bisphenols containing long aliphatic hydrocarbon side chains were synthesized by the condensation of phenol with aldehyde or ketone in the presence of heteropolyacid. Their structures were characterized by IR, 1H NMR, 13C NMR and element analysis. The experiment results show that when heteropolyacid was used as a catalyst, these bisphenols were obtained in high selectivity and high yields.展开更多
MCM-41 was synthesized by a soft template technique.The specific surface area and pore volume of the MCM-41 were 805.9 m2/g and 0.795 cm3/g,respectively.MCM-41-supported manganese and cobalt oxide catalysts were prepa...MCM-41 was synthesized by a soft template technique.The specific surface area and pore volume of the MCM-41 were 805.9 m2/g and 0.795 cm3/g,respectively.MCM-41-supported manganese and cobalt oxide catalysts were prepared by an impregnation method.The energy dispersive X-ray spectroscopy clearly confirmed the existence of Mn,Co,and O,which indicated the successful loading of the active components on the surface of MCM-41.The structure and function of the catalysts were changed by modulating the molar ratio of manganese to cobalt.The 10%MnCo(6:1)/MCM-41(Mn/Co molar ratio is 6:1)catalyst displayed the best catalytic activity according to the activity evaluation experiments,and chlorobenzene(1000 ppm)was totally decomposed at 270°C.The high activity correlated with a high dispersion of the oxides and was attributed to the exposure of more active sites,which was demonstrated by X-ray diffraction and high-resolution transmission electron microscopy.The strong interactions between MnO2,Co3O4,MnCoOx,and MCM-41 indicated that cobalt promoted the redox cycles of the manganese system.The bimetal-oxide-based catalyst showed better catalytic activity than that of the single metal oxide catalysts,which was further confirmed by H2 temperature-programmed reduction.Chlorobenzene temperature-programmed desorption results showed that 10%MnCo(6:1)/MCM-41 had higher adsorption strength for chlorobenzene than that of single metal catalysts.And stronger adsorption was beneficial for combustion of chlorobenzene.Furthermore,10%MnCo(6:1)/MCM-41 was not deactivated during a continuous reaction for 1000 h at 260°C and displayed good resistance to water and benzene,which indicated that the catalyst could be used in a wide range of applications.展开更多
Two series of WP/Al2O3 catalyst precursors with WP mass loading in the range 18.5%—37.1% were prepared using the impregnation method and mixing method, respectively, and the catalysts were then obtained by temperatur...Two series of WP/Al2O3 catalyst precursors with WP mass loading in the range 18.5%—37.1% were prepared using the impregnation method and mixing method, respectively, and the catalysts were then obtained by temperature-programmed reduction of supported tungsten phosphate (precursor of WP/Al2O3 catatlysts) in H2 at 650℃ for 4h. The catalysts were characterized by XRD, BET, TG/DTA , XPS and 31P MAS-NMR. The activities of these catalysts were tested in the hydrodenitrogenation (HDN) of pyridine and hydrodesulfurization (HDS) of thiophene at 340℃ and 3.0MPa. The results showed that owing to the stronger interaction of the support with the active species, the precursor of WP/Al2O3 catalyst was more difficultly phosphided and a greater amount of W spe- cies was in a high valence state W6+ on the surface of the catalyst prepared by the impregnation method than that by the mixing method. 31P MAS-NMR results indicated that 31P shift from 85% H3PO4 of 2.55×10-4 for WP and 2.57 ×10-4 for WP/γ-Al2O3 catalysts prepared by mixing method. Such WP/Al2O3 catalysts showed higher HDN activi- ties and lower HDS activities than those prepared by the impregnation method under the same loading of WP. WP/γ-Al2O3 catalysts with weak interaction between support and active species were favorable for HDN reaction while the WP/γ-Al2O3 catalysts with strong interaction were favorable for HDS reaction.展开更多
基金supported by the National Natural Science Foundation of China (21573232, 21576251, 21676269)National Key Projects for Funda-mental Research and Development of China (2016YFA0202801)Department of Science and Technology of Liaoning province under contract of 2015020086–101~~
文摘The formations and transformations of the chemical bonds of reactants and intermediates on cata- lyst surfaces occur in conjunction with the evolution of heat during catalytic reactions. Measure- ment of this evolved heat is helpful in terms of understanding the nature of the interactions be- tween the catalyst and the adsorbed species, and provides insights into the reactivity of the catalyst. Although various techniques have previously been applied to assessments of evolved heat, direct measurements using a Tian-Calvet microcalorimeter are currently the most reliable method for this purpose. In this review, we summarize the relationship between the adsorption/reaction energetics determined by microcalorimetry and the reactivities of supported catalysts, and examine the im- portant role of microcalorimetry in understanding catalytic performance from the energetic point of view.
基金Projects(50702020,81171461)supported by the National Natural Science Foundation of ChinaProject(11JJ4013)supported by Natural Science Foundation of Hunan Province,ChinaProject supported by the Young Teacher Promotion Fund by Hunan University,China
文摘Perovskite ZnTiO3 was prepared through a new method which contained a hydrothermal process for the preparation of titanate nanotubes and an ion-exchange process.The titanate nanotubes were inferred to be H2Ti3O7·3H2O.X-ray diffraction(XRD)result revealed the presence of cubic perovskite phase of ZnTiO3.The unique chain-like morphology of ZnTiO3 was observed by scanning electron microscopy(SEM) and transmission electron microscopy(TEM).UV-Vis diffusive reflection spectra of ZnTiO3indicated that the absorbance obviously increased in the visible light region.The degradation rate of methyl orange solution(15 mg/L)reached 95.3%over ZnTiO3(0.3 g/L) after 20 min xenon light irradiation,which was higher than that using the commercial catalyst P25 under the same reaction condition.The degradation kinetic results follow the first-order equation and the rate constant is 0.1020.
基金Supported by the National Natural Science Foundation of China (20476046) and the "Qinglan" Project of Jiangsu Province for Young Researchers.
文摘In order to solve the serious leaching problem of supported heteropoly acid catalysts in polar reaction media, 12-molybdophosphoric acid encapsulated in the supercage of Cs^+-exchanged Y zeolite was prepared by the "ship in the bottle" synthesis. The influence of ion-exchange conditions and the synthesis parameters on the encaosulation of PMo12 were investigated. The obtained solid sample was characterized by X-ray diffraction (XRD), 31p magic angle spin nuclear magnetic resonance (MAS NMR) and Fourier Transform Infrared Spectroscopy (FT-IR), and its catalytic activity in the esterification of acetic acid and n-butanol was tested. The ion-exchange time, concentration of aqueous Cs^+ solution, pH value, and amount of Mo added in the synthesis mixture were revealed to influence the encapsulation very remarkably. Under the optimal conditions, 12-molybdophosphoric acid could be successfully encapsulated in the supercage of CsY zeolite, and the samples showed considerable catalytic activity and excellent reusability in the esterification reaction.
基金supported by the National Natural Science Fundation of China(21722303,21421001)the Municipal Natural Science Fund of Tianjin(18JCJQJC47400,18JCZDJC37400)111 Project(B12015,B18030)~~
文摘Zeolites with ordered porous structure of molecular size are widely employed as commercial adsorbents and catalysts.On the other hand,the zeolite matrix is regarded as an ideal scaffold for hosting coordinatively unsaturated sites.Remarkable achievements have been made dealing with the construction,characterization and catalytic applications of coordinatively unsaturated sites in zeolite matrix.Herein,a literature overview of recent progresses on this important topic is presented from the specific view of coordination chemistry.Different strategies to construction coordinatively unsaturated sites in zeolite matrix,in zeolite framework or extraframework positions,are first introduced and their characteristics are compared.Then,spectroscopic techniques to determine the existing states of cation sites and their transformations in zeolite matrix are discussed.In the last section,the catalytic applications of coordinatively unsaturated sites in zeolite matrix for various important chemical transformations are summarized.
文摘Partially or fully regenerated catalytic cracking catalysts were prepared by gasifying the coke deposited on coked catalysts with a gaseous mixture of oxygen and steam in a fixed fluidized bed (FFB). The resultant samples were characterized by different methods such as the nitrogen adsorption-desorption analysis, the X-ray diffractometry, the infrared spectroscopy, the ammonia temperature-programmed desorption (NH3-TPD) method, the X-ray fluorescence (XRF) analysis, the transmission electron microscopy and energy dispersive X-ray spectroscopy (TEM-EDX), the thermal-gravimetric analysis (TGA) and the differential thermal analysis (DTA). The results showed that exposure of catalyst to steam for about 10 minutes at temperature ≥ 800 ℃ could not cause too much destruction of the catalysts, and an amount of coke equating to about 0.27 m% was enough to block approximately all acid sites in micro-pores of the zeolite catalyst. Coke didn't show equal reactivity during coke burning-off that could be accelerated by the catalytic action of nearby metal atoms. However, when the carbon content on the catalyst reached about 2.44 m%, the catalytic action of metals on the catalyst was not evident. The severe thermal and hydrothermal environment during exposure of the catalyst to steam at a temperature in the range of about 860--880 ℃ for 30 minutes could lead to collapse of pore structure and transformation of crystal phase and consequently decrease of the surface area and acid amount on the catalyst.
基金Supported by the National Natural Science Foundation of China (20376005).
文摘A series of the Pt-Sn/SBA-15 catalysts were prepared and their properties characterized by using X-ray powder diffraction (XRD), N2 adsorption-desorption, high resolution transmission electron microscope, X-ray photoelectron spectroscopy (XPS) and H2-temperature programmed reduction. Their performances in long chain alkane dehydrogenation were evaluated in a fixed-bed microreactor with dodecane as a model alkane. The results indicated that SBA-15 maintained the well-order mesoporous structure during the reaction. The performance of the catalyst was found not dominated by its textural properties, but by the molar ratio of Sn to Pt which governed the degree of Sn reduction. Owing to the highest degree of Sn reduction, 1% (by mass) Pt-1.8% (by mass) Sn/SBA-15 showed the best catalytic activity. At 0.1 MPa and 470℃, the molar ratio of hydrogen to alkane at 4, and liquid hourly space velocity (LHSV) 20 h^-1, the dodecane conversion is 10%, and the dodecene selectivity is about 70%.
基金supported by the National Natural Science Foundation of China(51472184 and 51472185)the Science and Technology Support Program of Hubei Province(2013BHE003)the Program for Innovative Teams of Outstanding Young and Middle-Aged Researchers in the Higher Education Institutions of Hubei Province(T201602)~~
文摘Supported and colloidal single‐atom catalysts(SACs),which possess excellent catalytic properties,are particularly important in both fundamental studies and practical applications.The progress made in the preparation methods,characterization,catalytic performances and mechanisms of SACs anchored to metal oxides,two‐dimensional materials and the surface of metal nanoclusters(NCs)are reviewed.The different techniques for SAC fabrication,including conventional solution methods based on co‐precipitation,incipient wetness co‐impregnation,and the chemical vapor deposition method,as well as the newer atom layer deposition(ALD)and galvanic replacement methods,are summarized.The main results from experimental and theoretical studies of various catalytic reactions over SACs,including oxidation reactions,hydrogenation,water gas shift,photocatalytic H2evolution and electrochemical reactions,are also discussed.Moreover,the electronic properties of the single atoms and their interactions with the supports are described to assist in understanding the origin of the high catalytic activity and selectivity of SACs.Finally,possible future research directions of SACs and their applications are proposed.
文摘Electrochemical energy conversion technologies involving processes such as water splitting and O_(2)/CO_(2) reduction,provide promising solutions for addressing global energy scarcity and minimizing adverse environmental impact.However,due to a lack of an in-depth understanding of the reaction mechanisms and the nature of the active sites,further advancement of these techniques has been limited by the development of efficient and robust catalysts.Therefore,in situ characterization of these electrocatalytic processes under working conditions is essential.In this review,recent applications of in situ Raman spectroscopy and X-ray absorption spectroscopy for various nano-and single-atom catalysts in energy-related reactions are summarized.Notable cases are highlighted,including the capture of oxygen-containing intermediate species formed during the reduction of oxygen and oxidation of hydrogen,and the detection of catalyst structural transformations occurring with the change in potential during the evolution of oxygen and reduction of CO_(2).Finally,the challenges and outlook for advancing in situ spectroscopic technologies to gain a deeper fundamental understanding of these energy-related electrocatalytic processes are discussed.
基金Supported by the National Natural Science Foundation of China(No.5 94 6 30 0 1)
文摘Bisphenols containing long aliphatic hydrocarbon side chains were synthesized by the condensation of phenol with aldehyde or ketone in the presence of heteropolyacid. Their structures were characterized by IR, 1H NMR, 13C NMR and element analysis. The experiment results show that when heteropolyacid was used as a catalyst, these bisphenols were obtained in high selectivity and high yields.
文摘MCM-41 was synthesized by a soft template technique.The specific surface area and pore volume of the MCM-41 were 805.9 m2/g and 0.795 cm3/g,respectively.MCM-41-supported manganese and cobalt oxide catalysts were prepared by an impregnation method.The energy dispersive X-ray spectroscopy clearly confirmed the existence of Mn,Co,and O,which indicated the successful loading of the active components on the surface of MCM-41.The structure and function of the catalysts were changed by modulating the molar ratio of manganese to cobalt.The 10%MnCo(6:1)/MCM-41(Mn/Co molar ratio is 6:1)catalyst displayed the best catalytic activity according to the activity evaluation experiments,and chlorobenzene(1000 ppm)was totally decomposed at 270°C.The high activity correlated with a high dispersion of the oxides and was attributed to the exposure of more active sites,which was demonstrated by X-ray diffraction and high-resolution transmission electron microscopy.The strong interactions between MnO2,Co3O4,MnCoOx,and MCM-41 indicated that cobalt promoted the redox cycles of the manganese system.The bimetal-oxide-based catalyst showed better catalytic activity than that of the single metal oxide catalysts,which was further confirmed by H2 temperature-programmed reduction.Chlorobenzene temperature-programmed desorption results showed that 10%MnCo(6:1)/MCM-41 had higher adsorption strength for chlorobenzene than that of single metal catalysts.And stronger adsorption was beneficial for combustion of chlorobenzene.Furthermore,10%MnCo(6:1)/MCM-41 was not deactivated during a continuous reaction for 1000 h at 260°C and displayed good resistance to water and benzene,which indicated that the catalyst could be used in a wide range of applications.
基金Supported by the National Natural Science Foundation of China (No.200273011), the National 973 Project (No.G2000048003)and the Beijing Natural Science Foundation (No.2052009).
文摘Two series of WP/Al2O3 catalyst precursors with WP mass loading in the range 18.5%—37.1% were prepared using the impregnation method and mixing method, respectively, and the catalysts were then obtained by temperature-programmed reduction of supported tungsten phosphate (precursor of WP/Al2O3 catatlysts) in H2 at 650℃ for 4h. The catalysts were characterized by XRD, BET, TG/DTA , XPS and 31P MAS-NMR. The activities of these catalysts were tested in the hydrodenitrogenation (HDN) of pyridine and hydrodesulfurization (HDS) of thiophene at 340℃ and 3.0MPa. The results showed that owing to the stronger interaction of the support with the active species, the precursor of WP/Al2O3 catalyst was more difficultly phosphided and a greater amount of W spe- cies was in a high valence state W6+ on the surface of the catalyst prepared by the impregnation method than that by the mixing method. 31P MAS-NMR results indicated that 31P shift from 85% H3PO4 of 2.55×10-4 for WP and 2.57 ×10-4 for WP/γ-Al2O3 catalysts prepared by mixing method. Such WP/Al2O3 catalysts showed higher HDN activi- ties and lower HDS activities than those prepared by the impregnation method under the same loading of WP. WP/γ-Al2O3 catalysts with weak interaction between support and active species were favorable for HDN reaction while the WP/γ-Al2O3 catalysts with strong interaction were favorable for HDS reaction.