Cutting-edge technologies in optical molecular imaging have ushered in new frontiers in cancer research, clinical translation, and medical practice, as evidenced by recent advances in optical multimodality imaging, Ce...Cutting-edge technologies in optical molecular imaging have ushered in new frontiers in cancer research, clinical translation, and medical practice, as evidenced by recent advances in optical multimodality imaging, Cerenkov luminescence imaging(CLI), and optical imageguided surgeries. New abilities allow in vivo cancer imaging with sensitivity and accuracy that are unprecedented in conventional imaging approaches. The visualization of cellular and molecular behaviors and events within tumors in living subjects is improving our deeper understanding of tumors at a systems level. These advances are being rapidly used to acquire tumor-to-tumor molecular heterogeneity, both dynamically and quantitatively, as well as to achieve more effective therapeutic interventions with the assistance of real-time imaging. In the era of molecular imaging, optical technologies hold great promise to facilitate the development of highly sensitive cancer diagnoses as well as personalized patient treatment—one of the ultimate goals of precision medicine.展开更多
Recent advancements in the endoscopic imaging of Barrett's esophagus can be used to probe a wide range of optical properties that are altered with neoplastic progression.This review summarizes relevant changes in ...Recent advancements in the endoscopic imaging of Barrett's esophagus can be used to probe a wide range of optical properties that are altered with neoplastic progression.This review summarizes relevant changes in optical properties as well as imaging approaches that measures those changes.Wide-field imaging approaches include narrow-band imaging that measures changes in light scattering and absorption,and autofluorescence imaging that measure changes in endogenous fluorophores.High-resolution imaging approaches include optical coherence tomography,endocytoscopy,confocal microendoscopy,and high-resolution microendoscopy.These technologies,some coupled with an appropriate contrast agent,can measure differences in glandular morphology,nuclear morphology,or vascular alterations associated with neoplasia.Advances in targeted contrast agents are further discussed.Studies that have explored these technologies are highlighted;as are the advantages and limitations of each.展开更多
The book "micropedolog" by Kubieana and a large number of publications has induced many people to practice soil micromorphology. Quantification of the soil fabric and its components was a major challenge. The use of...The book "micropedolog" by Kubieana and a large number of publications has induced many people to practice soil micromorphology. Quantification of the soil fabric and its components was a major challenge. The use of the image analyses in soil science was a breakthrough. Attempts to make soil thin sections go back to the beginning of the 2oth century. Microscopic techniques and recently high resolution electron microscope and use of computer assisted imaging techniques enabled the in vitro study of soils in three dimensional levels. It is now possible to store and process massive amounts of data. Micro- morphological concepts and techniques are applied in paleopedological, ecological, and archaeological studies. The aim of this work was to examine soil micromorphological imaging in historical perspective.展开更多
In this study,we report the design and simulation of an electrostatic ion lens system consisting of 22 round metal plates.The opening of the extractor plate is covered withmetal mesh,which is for shielding the interac...In this study,we report the design and simulation of an electrostatic ion lens system consisting of 22 round metal plates.The opening of the extractor plate is covered withmetal mesh,which is for shielding the interaction region of the lens system from the high DC voltages applied to all other plates than the repeller and extractor plates.The Simion simulation shows that both velocity-mapping and time focusing can be achieved simultaneously when appropriate voltages are applied to each of the plates.This makes the ion lens system be able to focus large ionic volumes in all three dimensions,which is an essential requirement for crossed ion-molecule scattering studies.A three-dimensional ion velocity measurement system with multi-hit and potential multi-mass capability is built,which consists of a microchannel plate(MCP),a P47 phosphor screen,a CMOS camera,a fast photomultiplier tube(PMT),and a high-speed digitizer.The two velocity components perpendicular to the flight axis are measured by the CMOS camera,and the time-of-flight,from which the velocity component along the flight axis can be deduced,is measured by the PMT.A Labview program is written to combine the two measurements for building the full three-dimensional ion velocity in real time on a frame-by-frame basis.The multi-hit capability comes from the fact that multiple ions from the camera and PMT in the same frame can be correlated with each other based on their various intensities.We demonstrate this by using the photodissociation of CH31 at 304 nm.展开更多
Europium-doped gadolinium oxide (Gd2O3:Eu) nanoparticles have been synthesized, and then their surfaces have been conjugated with nucleolin- targeted AS1411 aptamer to form functionalized target-specific Gd2OB:EU ...Europium-doped gadolinium oxide (Gd2O3:Eu) nanoparticles have been synthesized, and then their surfaces have been conjugated with nucleolin- targeted AS1411 aptamer to form functionalized target-specific Gd2OB:EU nanoparticles (A-GdO:Eu nanoparticles). The A-GdO:Eu nanoparticles present strong fluorescence in the visible range, high magnetic susceptibility, X-ray attenuation and good biocompatibility. The A-GdO:Eu nanoparticles have been applied to test molecular expression of nucleolin highly expressed CL1-5 lung cancer cells under a confocal microscope. Fluorescence imaging clearly reveals that the nanoparticles can be applied as fluorescent tags for cancer-targeting molecular imaging. Furthermore, taking together their excellent T1 contrast and strong computed tomography (CT) signal, the A-GdO:Eu nanoparticles demonstrate a great capability for use as a dual modality contrast agent for CT and magnetic resonance (MR) molecular imaging. Animal experiments also show that the A-GdO:Eu nanoparticles are able to contrast the tissues of BALB/c mice using CT modality. Moreover, the obvious red fluorescence of A-GdO:Eu nanoparticles can be visualized in a tumor by the naked eye. Overall, our results demonstrate that the A-GdO:Eu nanoparticles can not only serve as new medical contrast agents but also as intraoperative fluorescence imaging probes for guided surgery in the near future.展开更多
Brain cancer is one of the most lethal and difficult-to-treat cancers because of its physical location and biological barriers. The mainstay of brain cancer treatment is surgical resection, which demands precise imagi...Brain cancer is one of the most lethal and difficult-to-treat cancers because of its physical location and biological barriers. The mainstay of brain cancer treatment is surgical resection, which demands precise imaging for tumor localization and delineation. Thanks to advances in bioimaging, brain cancer can be detected earlier and resected more reliably. Magnetic resonance imaging(MRI) is the most common and preferred method to delineate brain cancer, and a contrast agent is often required to enhance imaging contrast.Dendrimers, a special family of synthetic macromolecules,constitute a particularly appealing platform for constructing MRI contrast agents by virtue of their well-defined three-dimensional structure, tunable nanosize and abundant surface terminals, which allow the accommodation of high payloads and numerous functionalities. Tuning the dendrimer size,branching and surface composition in conjunction with conjugation of MRI functionalities and targeting moieties can alter the relaxivity for MRI, overcome the blood-brain barrier and enhance tumor-specific targeting, hence improving the imaging quality and safety profile for precise and accurate imaging of brain tumors. This short review highlights the recent progress, opportunities and challenges in developing dendrimer-based MRI contrast agents for brain tumor imaging.展开更多
文摘Cutting-edge technologies in optical molecular imaging have ushered in new frontiers in cancer research, clinical translation, and medical practice, as evidenced by recent advances in optical multimodality imaging, Cerenkov luminescence imaging(CLI), and optical imageguided surgeries. New abilities allow in vivo cancer imaging with sensitivity and accuracy that are unprecedented in conventional imaging approaches. The visualization of cellular and molecular behaviors and events within tumors in living subjects is improving our deeper understanding of tumors at a systems level. These advances are being rapidly used to acquire tumor-to-tumor molecular heterogeneity, both dynamically and quantitatively, as well as to achieve more effective therapeutic interventions with the assistance of real-time imaging. In the era of molecular imaging, optical technologies hold great promise to facilitate the development of highly sensitive cancer diagnoses as well as personalized patient treatment—one of the ultimate goals of precision medicine.
基金Supported by The National Institute of Health Grants BRP CA103830 and RO1 EB007594
文摘Recent advancements in the endoscopic imaging of Barrett's esophagus can be used to probe a wide range of optical properties that are altered with neoplastic progression.This review summarizes relevant changes in optical properties as well as imaging approaches that measures those changes.Wide-field imaging approaches include narrow-band imaging that measures changes in light scattering and absorption,and autofluorescence imaging that measure changes in endogenous fluorophores.High-resolution imaging approaches include optical coherence tomography,endocytoscopy,confocal microendoscopy,and high-resolution microendoscopy.These technologies,some coupled with an appropriate contrast agent,can measure differences in glandular morphology,nuclear morphology,or vascular alterations associated with neoplasia.Advances in targeted contrast agents are further discussed.Studies that have explored these technologies are highlighted;as are the advantages and limitations of each.
文摘The book "micropedolog" by Kubieana and a large number of publications has induced many people to practice soil micromorphology. Quantification of the soil fabric and its components was a major challenge. The use of the image analyses in soil science was a breakthrough. Attempts to make soil thin sections go back to the beginning of the 2oth century. Microscopic techniques and recently high resolution electron microscope and use of computer assisted imaging techniques enabled the in vitro study of soils in three dimensional levels. It is now possible to store and process massive amounts of data. Micro- morphological concepts and techniques are applied in paleopedological, ecological, and archaeological studies. The aim of this work was to examine soil micromorphological imaging in historical perspective.
基金This work is supported by the Program for Young Outstanding Scientists of Institute of Chemistry,Chinese Academy of Science,and Beijing National Laboratory for Molecular SciencesHong Gao and Li-chang Guan are also supported by the K.C.Wong Education Foundation.
文摘In this study,we report the design and simulation of an electrostatic ion lens system consisting of 22 round metal plates.The opening of the extractor plate is covered withmetal mesh,which is for shielding the interaction region of the lens system from the high DC voltages applied to all other plates than the repeller and extractor plates.The Simion simulation shows that both velocity-mapping and time focusing can be achieved simultaneously when appropriate voltages are applied to each of the plates.This makes the ion lens system be able to focus large ionic volumes in all three dimensions,which is an essential requirement for crossed ion-molecule scattering studies.A three-dimensional ion velocity measurement system with multi-hit and potential multi-mass capability is built,which consists of a microchannel plate(MCP),a P47 phosphor screen,a CMOS camera,a fast photomultiplier tube(PMT),and a high-speed digitizer.The two velocity components perpendicular to the flight axis are measured by the CMOS camera,and the time-of-flight,from which the velocity component along the flight axis can be deduced,is measured by the PMT.A Labview program is written to combine the two measurements for building the full three-dimensional ion velocity in real time on a frame-by-frame basis.The multi-hit capability comes from the fact that multiple ions from the camera and PMT in the same frame can be correlated with each other based on their various intensities.We demonstrate this by using the photodissociation of CH31 at 304 nm.
文摘Europium-doped gadolinium oxide (Gd2O3:Eu) nanoparticles have been synthesized, and then their surfaces have been conjugated with nucleolin- targeted AS1411 aptamer to form functionalized target-specific Gd2OB:EU nanoparticles (A-GdO:Eu nanoparticles). The A-GdO:Eu nanoparticles present strong fluorescence in the visible range, high magnetic susceptibility, X-ray attenuation and good biocompatibility. The A-GdO:Eu nanoparticles have been applied to test molecular expression of nucleolin highly expressed CL1-5 lung cancer cells under a confocal microscope. Fluorescence imaging clearly reveals that the nanoparticles can be applied as fluorescent tags for cancer-targeting molecular imaging. Furthermore, taking together their excellent T1 contrast and strong computed tomography (CT) signal, the A-GdO:Eu nanoparticles demonstrate a great capability for use as a dual modality contrast agent for CT and magnetic resonance (MR) molecular imaging. Animal experiments also show that the A-GdO:Eu nanoparticles are able to contrast the tissues of BALB/c mice using CT modality. Moreover, the obvious red fluorescence of A-GdO:Eu nanoparticles can be visualized in a tumor by the naked eye. Overall, our results demonstrate that the A-GdO:Eu nanoparticles can not only serve as new medical contrast agents but also as intraoperative fluorescence imaging probes for guided surgery in the near future.
基金Financial support from La Ligue Nationale Contre le Cancer (EL2016.LNCC/LPP to Peng L, PhD fellowship to Lyu Z)the French National Research Agency under the frame of EuroNano Med Ⅱ (ANR-15-ENM2-0006-02, ANR-16-ENM2-0004-02) (Peng L)+1 种基金the Campus France ORCHID program (Peng L, Kao CL)China Scholarship Council (Ding L)
文摘Brain cancer is one of the most lethal and difficult-to-treat cancers because of its physical location and biological barriers. The mainstay of brain cancer treatment is surgical resection, which demands precise imaging for tumor localization and delineation. Thanks to advances in bioimaging, brain cancer can be detected earlier and resected more reliably. Magnetic resonance imaging(MRI) is the most common and preferred method to delineate brain cancer, and a contrast agent is often required to enhance imaging contrast.Dendrimers, a special family of synthetic macromolecules,constitute a particularly appealing platform for constructing MRI contrast agents by virtue of their well-defined three-dimensional structure, tunable nanosize and abundant surface terminals, which allow the accommodation of high payloads and numerous functionalities. Tuning the dendrimer size,branching and surface composition in conjunction with conjugation of MRI functionalities and targeting moieties can alter the relaxivity for MRI, overcome the blood-brain barrier and enhance tumor-specific targeting, hence improving the imaging quality and safety profile for precise and accurate imaging of brain tumors. This short review highlights the recent progress, opportunities and challenges in developing dendrimer-based MRI contrast agents for brain tumor imaging.