A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inne...A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.展开更多
To alleviate the distortion of XRII X-ray image intensifier images in the C-arm CT computer tomography imaging system an algorithm based on the Delaunay triangulation interpolation is proposed.First the causes of the ...To alleviate the distortion of XRII X-ray image intensifier images in the C-arm CT computer tomography imaging system an algorithm based on the Delaunay triangulation interpolation is proposed.First the causes of the phenomenon the classical correction algorithms and the Delaunay triangulation interpolation are analyzed.Then the algorithm procedure is explained using flow charts and illustrations. Finally experiments are described to demonstrate its effectiveness and feasibility. Experimental results demonstrate that the Delaunay triangulation interpolation can have the following effects.In the case of the same center the root mean square distances RMSD and standard deviation STD between the corrected image with Delaunay triangulation interpolation and the ideal image are 5.760 4 ×10 -14 and 5.354 2 ×10 -14 respectively.They increase to 1.790 3 2.388 8 2.338 8 and 1.262 0 1.268 1 1.202 6 after applying the quartic polynomial model L1 and model L2 to the distorted images respectively.The RMSDs and STDs between the corrected image with the Delaunay triangulation interpolation and the ideal image are 2.489 × 10 -13 and 2.449 8 ×10 -13 when their centers do not coincide. When the quartic polynomial model L1 and model L2 are applied to the distorted images they are 1.770 3 2.388 8 2.338 8 and 1.269 9 1.268 1 1.202 6 respectively.展开更多
A novel spatial interpolation method based on integrated radial basis function artificial neural networks (IRBFANNs) is proposed to provide accurate and stable predictions of heavy metals concentrations in soil at u...A novel spatial interpolation method based on integrated radial basis function artificial neural networks (IRBFANNs) is proposed to provide accurate and stable predictions of heavy metals concentrations in soil at un- sampled sites in a mountain region. The IRBFANNs hybridize the advantages of the artificial neural networks and the neural networks integration approach. Three experimental projects under different sampling densities are carried out to study the performance of the proposed IRBFANNs-based interpolation method. This novel method is compared with six peer spatial interpolation methods based on the root mean square error and visual evaluation of the distribution maps of Mn elements. The experimental results show that the proposed method performs better in accuracy and stability. Moreover, the proposed method can provide more details in the spatial distribution maps than the compared interpolation methods in the cases of sparse sampling density.展开更多
A dynamic data updating algorithm for image superesolution is proposed. On the basis of Delaunay triangulation and its local updating property, this algorithm can update the changed region directly under the circumsta...A dynamic data updating algorithm for image superesolution is proposed. On the basis of Delaunay triangulation and its local updating property, this algorithm can update the changed region directly under the circumstances that only a part of the source images has been changed. For its high efficiency and adaptability, this algorithm can serve as a fast algorithm for image superesolution reconstruction.展开更多
To produce a smoother and more natural interpolated image, and to preserve and enhance original image details, we defined three perception-based local statistic parameters, namely contrast, noise visibility, and edge ...To produce a smoother and more natural interpolated image, and to preserve and enhance original image details, we defined three perception-based local statistic parameters, namely contrast, noise visibility, and edge strength based on three psychophysical principles, including Weber’s Law, Fechner’s Law, and Stevens’ Power Law, and integrated these parameters into a fuzzy logic system to set up an advanced image interpolation algorithm. Application of this algorithm to detect edge behaviors and local statistical information of images demonstrated better noise removal ability and obtained sharper edges than traditional image interpolation algorithems such as nearest neighbor, bilinear and bicubic interpolation methods.展开更多
In this paper, we conduct research on the novel natural image reconstruction and representation algorithm based on clustenng and modified neural network. Image resolution enhancement is one of the earliest researches ...In this paper, we conduct research on the novel natural image reconstruction and representation algorithm based on clustenng and modified neural network. Image resolution enhancement is one of the earliest researches of single image interpolation. Although the traditional interpolation and method for single image amplification is effect, but did not provide more useful information. Our method combines the neural network and the clustering approach. The experiment shows that our method performs well and satisfactory.展开更多
In this paper, a fast half-pixel motion estimation algorithm and its corresponding hardware architecture is presented. Unlike three steps are needed in typical half-pixel motion estimation algorithm, the presented alg...In this paper, a fast half-pixel motion estimation algorithm and its corresponding hardware architecture is presented. Unlike three steps are needed in typical half-pixel motion estimation algorithm, the presented algorithm needs only two steps to obtain all the interpolated pixels of an entire 8x8 block. The proposed architecture works in a parallel way and is simulated by Modelsirn 6.5 SE, synthesized to the Xilinx Virtex4 XC4VLX15 FPGA device. The implementation results show that this architecture can achieve 190 MHz and 10 clock cycles are reduced to complete the entire interpolation process when compared with typical half-pixel interpolation, which meets the requirements of real-time application for very high defination videos.展开更多
the close photogrammetric 3-D coordinate measurement is a newmeasuring technology in the fields of the coordinate measurementmachine (CMM) in recent years. In this method, we usually place sometargets on the measured ...the close photogrammetric 3-D coordinate measurement is a newmeasuring technology in the fields of the coordinate measurementmachine (CMM) in recent years. In this method, we usually place sometargets on the measured object and take image of targets to determinethe object coordinate. The subpixel location of target image plays animportant role in high accuracy 3-D coordinate measuring procedure.In this paper, some subpixel location methods are reviewed and somefactors which affect location precision are analyzed.展开更多
Ray-space based arbitrary viewpoint rendering without complex object segmentation or model construction is the main technology to realize Free Viewpoint Video(FVV) system for complex scenes. Ray-space interpolation an...Ray-space based arbitrary viewpoint rendering without complex object segmentation or model construction is the main technology to realize Free Viewpoint Video(FVV) system for complex scenes. Ray-space interpolation and compression are two key techniques for the solution. In this paper,correlation among multiple epipolar lines in ray-space data is analyzed,and a new method of ray-space interpolation with multi-epipolar lines matching is proposed. Comparing with the pixel-based matching interpolation method and the block-based matching interpolation method,the proposed method can achieve higher Peak Signal to Noise Ratio(PSNR) in interpolating rayspace data and rendering arbitrary viewpoint images.展开更多
In this paper, we propose a highly automatic approach for 3D photorealistic face reconstruction from a single frontal image. The key point of our work is the implementation of adaptive manifold learning approach. Befo...In this paper, we propose a highly automatic approach for 3D photorealistic face reconstruction from a single frontal image. The key point of our work is the implementation of adaptive manifold learning approach. Beforehand, an active appearance model (AAM) is trained for automatic feature extraction and adaptive locally linear embedding (ALLE) algorithm is utilized to reduce the dimensionality of the 3D database. Then, given an input frontal face image, the corresponding weights between 3D samples and the image are synthesized adaptively according to the AAM selected facial features. Finally, geometry reconstruction is achieved by linear weighted combination of adaptively selected samples. Radial basis function (RBF) is adopted to map facial texture from the frontal image to the reconstructed face geometry. The texture of invisible regions between the face and the ears is interpolated by sampling from the frontal image. This approach has several advantages: (1) Only a single frontal face image is needed for highly automatic face reconstruction; (2) Compared with former works, our reconstruction approach provides higher accuracy; (3) Constraint based RBF texture mapping provides natural appearance for reconstructed face.展开更多
In order to improve image quality, a novel Retinex algorithm for image enhancement was presented. Different from conventional algorithms, it was based on certain defined points containing the illumination information ...In order to improve image quality, a novel Retinex algorithm for image enhancement was presented. Different from conventional algorithms, it was based on certain defined points containing the illumination information in the intensity image to estimate the illumination. After locating the points, the whole illumination image was computed by an interpolation technique. When attempting to recover the reflectance image, an adaptive method which can be considered as an optimization problem was employed to suppress noise in dark environments and keep details in other areas. For color images, it was taken in the band of each channel separately. Experimental results demonstrate that the proposed algorithm is superior to the traditional Retinex algorithms in image entropy.展开更多
How to sufficiently exploit the self-similarity of natural images for image restoration has attracted extensive interest in the field of image processing in recent years.In fact,the self-similarity implies two-directi...How to sufficiently exploit the self-similarity of natural images for image restoration has attracted extensive interest in the field of image processing in recent years.In fact,the self-similarity implies two-direction similarity structures inherent in images,when a group of similar patches are rearranged to form a matrix,there exists similarity between both columns and rows of this matrix.In this paper,we propose a two-direction nonlocal model (TDNL) to symmetrically exploit the two-direction similarity structures in images,the model directly takes the similar patches as local adaptive dictionary to represent each patch in the image and constrain the representation coefficients by Tikhonov regularization.TDNL can achieve the best results so far and obtain significant gains over the existing methods,in terms of both peak signal to noise ratio (PSNR) measure and the visual quality when it is applied to the problem of image interpolation.展开更多
We present a new high-payload joint reversible data-hiding scheme for encrypted images. Instead of embedding data in the encrypted image directly, the content owner first uses an interpolation technique to estimate wh...We present a new high-payload joint reversible data-hiding scheme for encrypted images. Instead of embedding data in the encrypted image directly, the content owner first uses an interpolation technique to estimate whether the location can be used for embedding and generates a location map before encryption. Next, the data hider embeds the additional data through flipping the most significant bits (MSBs) of the encrypted image according to the location map. At the receiver side, before extracting the additional data and reconstructing the image, the receiver decrypts the image first. Experimental results demonstrate that the proposed method can achieve real reversibility, which means data extraction and image recovery are free of error. Moreover, our scheme can embed more payloads than most existing reversible data hiding schemes in encrypted images.展开更多
基金The National Natural Science Foundation of China (No.61362001,61102043,61262084,20132BAB211030,20122BAB211015)the Basic Research Program of Shenzhen(No.JC201104220219A)
文摘A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.
基金The Natural Science Foundation of Anhui Province(No.1308085MF96)the Project of Chuzhou University(No.2012qd06,2011kj010B)+1 种基金the Scientific Research Foundation of Education Department of Anhui Province(No.KJ2014A186)the National Basic Research Program of China(973 Program)(No.2010CB732503)
文摘To alleviate the distortion of XRII X-ray image intensifier images in the C-arm CT computer tomography imaging system an algorithm based on the Delaunay triangulation interpolation is proposed.First the causes of the phenomenon the classical correction algorithms and the Delaunay triangulation interpolation are analyzed.Then the algorithm procedure is explained using flow charts and illustrations. Finally experiments are described to demonstrate its effectiveness and feasibility. Experimental results demonstrate that the Delaunay triangulation interpolation can have the following effects.In the case of the same center the root mean square distances RMSD and standard deviation STD between the corrected image with Delaunay triangulation interpolation and the ideal image are 5.760 4 ×10 -14 and 5.354 2 ×10 -14 respectively.They increase to 1.790 3 2.388 8 2.338 8 and 1.262 0 1.268 1 1.202 6 after applying the quartic polynomial model L1 and model L2 to the distorted images respectively.The RMSDs and STDs between the corrected image with the Delaunay triangulation interpolation and the ideal image are 2.489 × 10 -13 and 2.449 8 ×10 -13 when their centers do not coincide. When the quartic polynomial model L1 and model L2 are applied to the distorted images they are 1.770 3 2.388 8 2.338 8 and 1.269 9 1.268 1 1.202 6 respectively.
基金The National Natural Science Foundation of China(No.61261007,61062005)the Key Program of Yunnan Natural Science Foundation(No.2013FA008)
文摘A novel spatial interpolation method based on integrated radial basis function artificial neural networks (IRBFANNs) is proposed to provide accurate and stable predictions of heavy metals concentrations in soil at un- sampled sites in a mountain region. The IRBFANNs hybridize the advantages of the artificial neural networks and the neural networks integration approach. Three experimental projects under different sampling densities are carried out to study the performance of the proposed IRBFANNs-based interpolation method. This novel method is compared with six peer spatial interpolation methods based on the root mean square error and visual evaluation of the distribution maps of Mn elements. The experimental results show that the proposed method performs better in accuracy and stability. Moreover, the proposed method can provide more details in the spatial distribution maps than the compared interpolation methods in the cases of sparse sampling density.
文摘A dynamic data updating algorithm for image superesolution is proposed. On the basis of Delaunay triangulation and its local updating property, this algorithm can update the changed region directly under the circumstances that only a part of the source images has been changed. For its high efficiency and adaptability, this algorithm can serve as a fast algorithm for image superesolution reconstruction.
基金Funded by Key Research Project of Liaoning Province Bureau of Science and Technology under the grant No. 2008217004China's Post-Doctoral Science Fund under the grant No. 200704111071
文摘To produce a smoother and more natural interpolated image, and to preserve and enhance original image details, we defined three perception-based local statistic parameters, namely contrast, noise visibility, and edge strength based on three psychophysical principles, including Weber’s Law, Fechner’s Law, and Stevens’ Power Law, and integrated these parameters into a fuzzy logic system to set up an advanced image interpolation algorithm. Application of this algorithm to detect edge behaviors and local statistical information of images demonstrated better noise removal ability and obtained sharper edges than traditional image interpolation algorithems such as nearest neighbor, bilinear and bicubic interpolation methods.
文摘In this paper, we conduct research on the novel natural image reconstruction and representation algorithm based on clustenng and modified neural network. Image resolution enhancement is one of the earliest researches of single image interpolation. Although the traditional interpolation and method for single image amplification is effect, but did not provide more useful information. Our method combines the neural network and the clustering approach. The experiment shows that our method performs well and satisfactory.
文摘In this paper, a fast half-pixel motion estimation algorithm and its corresponding hardware architecture is presented. Unlike three steps are needed in typical half-pixel motion estimation algorithm, the presented algorithm needs only two steps to obtain all the interpolated pixels of an entire 8x8 block. The proposed architecture works in a parallel way and is simulated by Modelsirn 6.5 SE, synthesized to the Xilinx Virtex4 XC4VLX15 FPGA device. The implementation results show that this architecture can achieve 190 MHz and 10 clock cycles are reduced to complete the entire interpolation process when compared with typical half-pixel interpolation, which meets the requirements of real-time application for very high defination videos.
文摘the close photogrammetric 3-D coordinate measurement is a newmeasuring technology in the fields of the coordinate measurementmachine (CMM) in recent years. In this method, we usually place sometargets on the measured object and take image of targets to determinethe object coordinate. The subpixel location of target image plays animportant role in high accuracy 3-D coordinate measuring procedure.In this paper, some subpixel location methods are reviewed and somefactors which affect location precision are analyzed.
基金the National Natural Science Foundation of China (No.60472100)the Natural Science Foundation of Zhejiang Province (No.Y105577)the Key Project of Chinese Ministry of Education (No.206059).
文摘Ray-space based arbitrary viewpoint rendering without complex object segmentation or model construction is the main technology to realize Free Viewpoint Video(FVV) system for complex scenes. Ray-space interpolation and compression are two key techniques for the solution. In this paper,correlation among multiple epipolar lines in ray-space data is analyzed,and a new method of ray-space interpolation with multi-epipolar lines matching is proposed. Comparing with the pixel-based matching interpolation method and the block-based matching interpolation method,the proposed method can achieve higher Peak Signal to Noise Ratio(PSNR) in interpolating rayspace data and rendering arbitrary viewpoint images.
基金Project supported by the National Natural Science Foundation of China (Nos. 60533090, 60525108)the National Basic Research Program (973) of China (No. 2002CB312101)+1 种基金the Science and Technology Project of Zhejiang Province, China (Nos. 2005C13032, 2005C11001-05)China-US Million Book Digital Library Project
文摘In this paper, we propose a highly automatic approach for 3D photorealistic face reconstruction from a single frontal image. The key point of our work is the implementation of adaptive manifold learning approach. Beforehand, an active appearance model (AAM) is trained for automatic feature extraction and adaptive locally linear embedding (ALLE) algorithm is utilized to reduce the dimensionality of the 3D database. Then, given an input frontal face image, the corresponding weights between 3D samples and the image are synthesized adaptively according to the AAM selected facial features. Finally, geometry reconstruction is achieved by linear weighted combination of adaptively selected samples. Radial basis function (RBF) is adopted to map facial texture from the frontal image to the reconstructed face geometry. The texture of invisible regions between the face and the ears is interpolated by sampling from the frontal image. This approach has several advantages: (1) Only a single frontal face image is needed for highly automatic face reconstruction; (2) Compared with former works, our reconstruction approach provides higher accuracy; (3) Constraint based RBF texture mapping provides natural appearance for reconstructed face.
基金Project(61071162) supported by the National Natural Science Foundation of China
文摘In order to improve image quality, a novel Retinex algorithm for image enhancement was presented. Different from conventional algorithms, it was based on certain defined points containing the illumination information in the intensity image to estimate the illumination. After locating the points, the whole illumination image was computed by an interpolation technique. When attempting to recover the reflectance image, an adaptive method which can be considered as an optimization problem was employed to suppress noise in dark environments and keep details in other areas. For color images, it was taken in the band of each channel separately. Experimental results demonstrate that the proposed algorithm is superior to the traditional Retinex algorithms in image entropy.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61001156,61105011,11101292,60872138 and61271294)the Natural Science Foundation of Ningxia University(Grant No. ZR1206)
文摘How to sufficiently exploit the self-similarity of natural images for image restoration has attracted extensive interest in the field of image processing in recent years.In fact,the self-similarity implies two-direction similarity structures inherent in images,when a group of similar patches are rearranged to form a matrix,there exists similarity between both columns and rows of this matrix.In this paper,we propose a two-direction nonlocal model (TDNL) to symmetrically exploit the two-direction similarity structures in images,the model directly takes the similar patches as local adaptive dictionary to represent each patch in the image and constrain the representation coefficients by Tikhonov regularization.TDNL can achieve the best results so far and obtain significant gains over the existing methods,in terms of both peak signal to noise ratio (PSNR) measure and the visual quality when it is applied to the problem of image interpolation.
基金Project supported by the National Natural Science Foundation of China (Nos. 61572089 and 61633005), the Natural Science Foundation of Chongqing Science and Technology Commission (No. cstc2017jcyjBX0008), the Chongqing Graduate Student Research Innovation Project (No. CY1317026), and the Fundamental Research Funds for the Central Universities (Nos. 106112017CDJQJ188830 and 106112017CDJXY180005)
文摘We present a new high-payload joint reversible data-hiding scheme for encrypted images. Instead of embedding data in the encrypted image directly, the content owner first uses an interpolation technique to estimate whether the location can be used for embedding and generates a location map before encryption. Next, the data hider embeds the additional data through flipping the most significant bits (MSBs) of the encrypted image according to the location map. At the receiver side, before extracting the additional data and reconstructing the image, the receiver decrypts the image first. Experimental results demonstrate that the proposed method can achieve real reversibility, which means data extraction and image recovery are free of error. Moreover, our scheme can embed more payloads than most existing reversible data hiding schemes in encrypted images.