We conducted a study on the numerical calculation and response analysis of a transient electromagnetic field generated by a ground source in geological media. One solution method, the traditional discrete image method...We conducted a study on the numerical calculation and response analysis of a transient electromagnetic field generated by a ground source in geological media. One solution method, the traditional discrete image method, involves complex operation, and its digital filtering algorithm requires a large number of calculations. To solve these problems, we proposed an improved discrete image method, where the following are realized: the real number of the electromagnetic field solution based on the Gaver-Stehfest algorithm for approximate inversion, the exponential approximation of the objective kernel function using the Prony method, the transient electromagnetic field according to discrete image theory, and closed-form solution of the approximate coefficients. To verify the method, we tentatively calculated the transient electromagnetic field in a homogeneous model and compared it with the results obtained from the Hankel transform digital filtering method. The results show that the method has considerable accuracy and good applicability. We then used this method to calculate the transient electromagnetic field generated by a ground magnetic dipole source in a typical geoelectric model and analyzed the horizontal component response of the induced magnetic field obtained from the "ground excitation-stratum measurement method. We reached the conclusion that the horizontal component response of a transient field is related to the geoelectric structure, observation time, spatial location, and others. The horizontal component response of the induced magnetic field reflects the eddy current field distribution and its vertical gradient variation. During the detection of abnormal objects, positions with a zero or comparatively large offset were selected for the drill- hole measurements or a comparatively long observation delay was adopted to reduce the influence of the ambient field on the survey results. The discrete image method and forward calculation results in this paper can be used as references for relevant research.展开更多
A novel sensitive semi-quantitative virus detection technique was developed using the respiratory syncytial virus(RSV) as an example, through dark-field light scattering imaging of the surface state of the virusinvade...A novel sensitive semi-quantitative virus detection technique was developed using the respiratory syncytial virus(RSV) as an example, through dark-field light scattering imaging of the surface state of the virusinvaded host cells. In this method, anti-RSV-antibody modified gold nanoparticles(Au NPs) could bind with the invading virus on the cell membrane of the infected host cells through the specific antibody-antigen binding. Then,the host cells could be imaged by the localized surface plasmon resonance light scattering properties of Au NPs under a dark-field light scattering microscopy, which could be further used to semi-quantify the invading virus.展开更多
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.41304082)the Young Scientists Fund of the Natural Science Foundation of Hebei Province(No.D2014403011)the Geological survey project of China Geological Survey(No.12120114090201)
文摘We conducted a study on the numerical calculation and response analysis of a transient electromagnetic field generated by a ground source in geological media. One solution method, the traditional discrete image method, involves complex operation, and its digital filtering algorithm requires a large number of calculations. To solve these problems, we proposed an improved discrete image method, where the following are realized: the real number of the electromagnetic field solution based on the Gaver-Stehfest algorithm for approximate inversion, the exponential approximation of the objective kernel function using the Prony method, the transient electromagnetic field according to discrete image theory, and closed-form solution of the approximate coefficients. To verify the method, we tentatively calculated the transient electromagnetic field in a homogeneous model and compared it with the results obtained from the Hankel transform digital filtering method. The results show that the method has considerable accuracy and good applicability. We then used this method to calculate the transient electromagnetic field generated by a ground magnetic dipole source in a typical geoelectric model and analyzed the horizontal component response of the induced magnetic field obtained from the "ground excitation-stratum measurement method. We reached the conclusion that the horizontal component response of a transient field is related to the geoelectric structure, observation time, spatial location, and others. The horizontal component response of the induced magnetic field reflects the eddy current field distribution and its vertical gradient variation. During the detection of abnormal objects, positions with a zero or comparatively large offset were selected for the drill- hole measurements or a comparatively long observation delay was adopted to reduce the influence of the ambient field on the survey results. The discrete image method and forward calculation results in this paper can be used as references for relevant research.
基金supported by the National Basic Research Program of China(2011CB933600)Chongqing Fundamental and Advanced Research Project(cstc2013jcyj A50008)the Fundamental Research Funds for the Central Universities(XDJK2015B029)
文摘A novel sensitive semi-quantitative virus detection technique was developed using the respiratory syncytial virus(RSV) as an example, through dark-field light scattering imaging of the surface state of the virusinvaded host cells. In this method, anti-RSV-antibody modified gold nanoparticles(Au NPs) could bind with the invading virus on the cell membrane of the infected host cells through the specific antibody-antigen binding. Then,the host cells could be imaged by the localized surface plasmon resonance light scattering properties of Au NPs under a dark-field light scattering microscopy, which could be further used to semi-quantify the invading virus.