Extraction of buildings from LIDAR data has been an active research field in recent years. A scheme for building detection and reconstruction from LIDAR data is presented with an object-oriented method which is based ...Extraction of buildings from LIDAR data has been an active research field in recent years. A scheme for building detection and reconstruction from LIDAR data is presented with an object-oriented method which is based on the buildings’ semantic rules. Two key steps are discussed: how to group the discrete LIDAR points into single objects and how to establish the buildings’ semantic rules. In the end, the buildings are reconstructed in 3D form and three common parametric building models (flat, gabled, hipped) are implemented.展开更多
An advanced edge-based method of feature detection and extraction is developed for object description in digital images. It is useful for the comparison of different images of the same scene in aerial imagery, for des...An advanced edge-based method of feature detection and extraction is developed for object description in digital images. It is useful for the comparison of different images of the same scene in aerial imagery, for describing and recognizing categories, for automatic building extraction and for finding the mutual regions in image matching. The method includes directional filtering and searching for straight edge segments in every direction and scale, taking into account edge gradient signs. Line segments are ordered with respect to their orientation and average gradients in the region in question. These segments are used for the construction of an object descriptor. A hierarchical set of feature descriptors is developed, taking into consideration the proposed straight line segment detector. Comparative performance is evaluated on the noisy model and in real aerial and satellite imagery.展开更多
Conventional image classification based on pixels hinders the possibilities to obtain information contained in images, while modern object-based classification methods increase the acquisition of information about the...Conventional image classification based on pixels hinders the possibilities to obtain information contained in images, while modern object-based classification methods increase the acquisition of information about the object and the context in which it is inserted in the image. The objective of this study was to investigate the performance of different classification methods for land cover mapping in the vicinity of the Alto Ribeira Tourist State Park, a Brazilian Atlantic rainforest area. Two classification methods were tested, including i) a hybrid per-pixel classification using the image processing software ERDAS Imagine version 9.1 and ii) an object-based classification using the software eCognition version 5. In the first method, six different classes were established, while in the second method, another two classes were established in addition to the six classes in the first method. Accuracy assessment of the classification results presented showed that the object-based classification with a Kappa index value of 0.8687 outperformed the per-pixel classification with a Kappa index value of 0.2224. Application of the user's knowledge during the object-based classification process achieved the desired quality; therefore, the use of inter-relationships between objects, superelasses, subclasses, and neighboring classes were critical to improving the efficiency of land cover classification.展开更多
基金Supported by the Key Laboratory of Geo Informatics of State Bureau of Surveying and Mapping.
文摘Extraction of buildings from LIDAR data has been an active research field in recent years. A scheme for building detection and reconstruction from LIDAR data is presented with an object-oriented method which is based on the buildings’ semantic rules. Two key steps are discussed: how to group the discrete LIDAR points into single objects and how to establish the buildings’ semantic rules. In the end, the buildings are reconstructed in 3D form and three common parametric building models (flat, gabled, hipped) are implemented.
文摘An advanced edge-based method of feature detection and extraction is developed for object description in digital images. It is useful for the comparison of different images of the same scene in aerial imagery, for describing and recognizing categories, for automatic building extraction and for finding the mutual regions in image matching. The method includes directional filtering and searching for straight edge segments in every direction and scale, taking into account edge gradient signs. Line segments are ordered with respect to their orientation and average gradients in the region in question. These segments are used for the construction of an object descriptor. A hierarchical set of feature descriptors is developed, taking into consideration the proposed straight line segment detector. Comparative performance is evaluated on the noisy model and in real aerial and satellite imagery.
基金Supported by the Sa o Paulo Research Foundation (FAPESP), Brazil
文摘Conventional image classification based on pixels hinders the possibilities to obtain information contained in images, while modern object-based classification methods increase the acquisition of information about the object and the context in which it is inserted in the image. The objective of this study was to investigate the performance of different classification methods for land cover mapping in the vicinity of the Alto Ribeira Tourist State Park, a Brazilian Atlantic rainforest area. Two classification methods were tested, including i) a hybrid per-pixel classification using the image processing software ERDAS Imagine version 9.1 and ii) an object-based classification using the software eCognition version 5. In the first method, six different classes were established, while in the second method, another two classes were established in addition to the six classes in the first method. Accuracy assessment of the classification results presented showed that the object-based classification with a Kappa index value of 0.8687 outperformed the per-pixel classification with a Kappa index value of 0.2224. Application of the user's knowledge during the object-based classification process achieved the desired quality; therefore, the use of inter-relationships between objects, superelasses, subclasses, and neighboring classes were critical to improving the efficiency of land cover classification.