Angle-domain common-image gathers(ADCIGs) are the basic data in migration velocity analysis(MVA) and amplitude variation with angle(AVA) analysis. We propose a common-angle gather-generating scheme using Kirchho...Angle-domain common-image gathers(ADCIGs) are the basic data in migration velocity analysis(MVA) and amplitude variation with angle(AVA) analysis. We propose a common-angle gather-generating scheme using Kirchhoff PSDM based on the traveltime gradient field. The scheme includes three major operations:(1) to calculate the traveltime field of the source and the receiver based on the dynamic programming approach;(2) to obtain the refl ection angle according to the traveltime gradient field in the image space; and(3) to generate the ADCIGs during the migration process. Because of the computation approach, the method for generating ADCIGs is superior to conventional ray-based methods. We use the proposed ADCIGs generation method in 3D large-scale seismic data. The key points of the method are the following.(1) We use common-shot datasets for migration,(2) we load traveltimes based on the shot aperture, and(3) we use the MPI and Open Mp memory sharing to decrease the amount of input and output(I/O). Numerical examples using synthetic data suggest that the ADCIGs improve the quality of the velocity and the effectiveness of the 3D angle-gather generation scheme.展开更多
Prestack depth migration of multicomponent seismic data improves the imaging accuracy of subsurface complex geological structures. An accurate velocity field is critical to accurate imaging. Gaussian beam migration wa...Prestack depth migration of multicomponent seismic data improves the imaging accuracy of subsurface complex geological structures. An accurate velocity field is critical to accurate imaging. Gaussian beam migration was used to perform multicomponent migration velocity analysis of PP- and PS-waves. First, PP- and PS-wave Gaussian beam prestack depth migration algorithms that operate on common-offset gathers are presented to extract offsetdomain common-image gathers of PP- and PS-waves. Second, based on the residual moveout equation, the migration velocity fields of P- and S-waves are updated. Depth matching is used to ensure that the depth of the target layers in the PP- and PS-wave migration profiles are consistent, and high-precision P- and S-wave velocities are obtained. Finally, synthetic and field seismic data suggest that the method can be used effectively in multiwave migration velocity analysis.展开更多
Typical existing methods of tunnel geological prediction include negative apparent velocity, horizontal seismic profile, and the Tunnel Seismic Prediction (TSP) method as this technology is under development at home...Typical existing methods of tunnel geological prediction include negative apparent velocity, horizontal seismic profile, and the Tunnel Seismic Prediction (TSP) method as this technology is under development at home and abroad. Considering simpler observational methods and data processing, it is hard to accurately determine the seismic velocity of the wall rock in the front of the tunnel face. Therefore, applying these defective methods may result in inaccurate geological inferences which will not provide sufficient evidence for classifying the wall rock characteristics. This paper proposes the Tunnel Seismic Tomography (TST) method using a spatial observation arrangement and migration and travel time inversion image processing to solve the problem of analyzing the velocity structure of wall rock in the front of the tunnel face and realize accurate imaging of the geological framework of the tunnel wall rock. This method is very appropriate for geological prediction under complex geological conditions.展开更多
Based on the image theory,the analytical solutions of tunneling-induced ground displacement were derived in conjunction with the nonuniform convergence model.The reasonable value of Poisson ratio in the analytical sol...Based on the image theory,the analytical solutions of tunneling-induced ground displacement were derived in conjunction with the nonuniform convergence model.The reasonable value of Poisson ratio in the analytical solution was discussed.The ground settlement width parameter which could reflect the ground condition was introduced to modify the analytical solutions proposed above,and new analytical solutions were presented.To evaluate the validity of the present solutions using the nonuniform convergence model,the results were compared with the observed values for four engineering projects,including 38 measured data of ground settlement.The agreement shows that the present solutions using the nonuniform convergence model are effective for evaluating the tunneling-induced ground displacements.展开更多
The spatial distribution and characterization of a heavily damaged area can be determined by studying surface ruptures of seismogenic faults.If the distribution of surface ruptures can be obtained shortly after they o...The spatial distribution and characterization of a heavily damaged area can be determined by studying surface ruptures of seismogenic faults.If the distribution of surface ruptures can be obtained shortly after they occur,then areas heavily damaged by an earthquake can be readily identified.The information can then be used as a guide for earthquake relief programs.In this paper,an intensity offset-tracking method applied to an ALOS PALSAR image is used to map the Yushu earthquake rupture and to identify the faults activated by the earthquake.Azimuthal displacement analysis indicates that the surface rupture is about 55 km long,running from the epicenter to the southeast,trending N310°W,with a relative displacement of~1 m characterized by sinistral slip.The result of range displacement observations indicates that the north wall of the fault is dominated by decreases(i.e.,uplift in line of sight observations) ,whereas in the south wall of the fault,the range displacement is dominated by increases(drops in line of sight observations) .Given the position from which the images were recorded,this means that the north wall moves westward,and the south wall move eastward,i.e.,left-lateral slip motion across the fault.Finally,an earthquake disaster assessment using computer-assisted image analysis software shows that buildings near the fault rupture have been destroyed most heavily;therefore,the shape of the heavily damage belt is controlled partially by the fault rupture's geometry and the damage degree relates to the magnitude of displacement field.展开更多
基金funded by the National Basic Research Program of China(973 Program)(No.2011 CB201002)the National Natural Science Foundation of China(No.41374117)the great and special projects(No.2011ZX05003-003,2011ZX05005-005-008 HZ,and 2011ZX05006-002)
文摘Angle-domain common-image gathers(ADCIGs) are the basic data in migration velocity analysis(MVA) and amplitude variation with angle(AVA) analysis. We propose a common-angle gather-generating scheme using Kirchhoff PSDM based on the traveltime gradient field. The scheme includes three major operations:(1) to calculate the traveltime field of the source and the receiver based on the dynamic programming approach;(2) to obtain the refl ection angle according to the traveltime gradient field in the image space; and(3) to generate the ADCIGs during the migration process. Because of the computation approach, the method for generating ADCIGs is superior to conventional ray-based methods. We use the proposed ADCIGs generation method in 3D large-scale seismic data. The key points of the method are the following.(1) We use common-shot datasets for migration,(2) we load traveltimes based on the shot aperture, and(3) we use the MPI and Open Mp memory sharing to decrease the amount of input and output(I/O). Numerical examples using synthetic data suggest that the ADCIGs improve the quality of the velocity and the effectiveness of the 3D angle-gather generation scheme.
基金supported by the National Special Fund of China(No.2011ZX05035-001-006HZ,2011ZX05008-006-22,2011ZX05049-01-02,and 2011ZX05019-003)the National Natural Science Foundation of China(No.41104084)the PetroChina Innovation Foundation(No.2011D-5006-0303)
文摘Prestack depth migration of multicomponent seismic data improves the imaging accuracy of subsurface complex geological structures. An accurate velocity field is critical to accurate imaging. Gaussian beam migration was used to perform multicomponent migration velocity analysis of PP- and PS-waves. First, PP- and PS-wave Gaussian beam prestack depth migration algorithms that operate on common-offset gathers are presented to extract offsetdomain common-image gathers of PP- and PS-waves. Second, based on the residual moveout equation, the migration velocity fields of P- and S-waves are updated. Depth matching is used to ensure that the depth of the target layers in the PP- and PS-wave migration profiles are consistent, and high-precision P- and S-wave velocities are obtained. Finally, synthetic and field seismic data suggest that the method can be used effectively in multiwave migration velocity analysis.
文摘Typical existing methods of tunnel geological prediction include negative apparent velocity, horizontal seismic profile, and the Tunnel Seismic Prediction (TSP) method as this technology is under development at home and abroad. Considering simpler observational methods and data processing, it is hard to accurately determine the seismic velocity of the wall rock in the front of the tunnel face. Therefore, applying these defective methods may result in inaccurate geological inferences which will not provide sufficient evidence for classifying the wall rock characteristics. This paper proposes the Tunnel Seismic Tomography (TST) method using a spatial observation arrangement and migration and travel time inversion image processing to solve the problem of analyzing the velocity structure of wall rock in the front of the tunnel face and realize accurate imaging of the geological framework of the tunnel wall rock. This method is very appropriate for geological prediction under complex geological conditions.
基金Project(09JJ1008) supported by Hunan Provincial Science Foundation of China
文摘Based on the image theory,the analytical solutions of tunneling-induced ground displacement were derived in conjunction with the nonuniform convergence model.The reasonable value of Poisson ratio in the analytical solution was discussed.The ground settlement width parameter which could reflect the ground condition was introduced to modify the analytical solutions proposed above,and new analytical solutions were presented.To evaluate the validity of the present solutions using the nonuniform convergence model,the results were compared with the observed values for four engineering projects,including 38 measured data of ground settlement.The agreement shows that the present solutions using the nonuniform convergence model are effective for evaluating the tunneling-induced ground displacements.
基金supported by National Science and Technology Pillar Program(Grant Nos.2008BAC38B03 and 2008BAC35B04)National Natural Science Foundation of China(Grant Nos.40940020 and 40874006)the Earthquake Research Special Fund(Grant No. 200708013)
文摘The spatial distribution and characterization of a heavily damaged area can be determined by studying surface ruptures of seismogenic faults.If the distribution of surface ruptures can be obtained shortly after they occur,then areas heavily damaged by an earthquake can be readily identified.The information can then be used as a guide for earthquake relief programs.In this paper,an intensity offset-tracking method applied to an ALOS PALSAR image is used to map the Yushu earthquake rupture and to identify the faults activated by the earthquake.Azimuthal displacement analysis indicates that the surface rupture is about 55 km long,running from the epicenter to the southeast,trending N310°W,with a relative displacement of~1 m characterized by sinistral slip.The result of range displacement observations indicates that the north wall of the fault is dominated by decreases(i.e.,uplift in line of sight observations) ,whereas in the south wall of the fault,the range displacement is dominated by increases(drops in line of sight observations) .Given the position from which the images were recorded,this means that the north wall moves westward,and the south wall move eastward,i.e.,left-lateral slip motion across the fault.Finally,an earthquake disaster assessment using computer-assisted image analysis software shows that buildings near the fault rupture have been destroyed most heavily;therefore,the shape of the heavily damage belt is controlled partially by the fault rupture's geometry and the damage degree relates to the magnitude of displacement field.