根据点和多边形在表示和绘制物体上各自不同的特点,提出了一种有效绘制细节高度复杂物体的多分辨率方法.3D表面被映射到参数平面,经规则采样成为几何图像,P-Quadtrees是基于几何图像建立的四叉树多分辨率层次结构.通过对四叉树的遍历,...根据点和多边形在表示和绘制物体上各自不同的特点,提出了一种有效绘制细节高度复杂物体的多分辨率方法.3D表面被映射到参数平面,经规则采样成为几何图像,P-Quadtrees是基于几何图像建立的四叉树多分辨率层次结构.通过对四叉树的遍历,面向视点的表面用较大多边形面片绘制,光照细节通过法向映射完成;轮廓部分通过视点相关的LOD(level of detail)控制进行细化,使用点来绘制物体复杂精细的轮廓.通过此方法,细节复杂模型的绘制不仅可以被硬件加速,而且无论在表面还是在轮廓部分都能获得很好的视觉效果.展开更多
To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can ...To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability.展开更多
Based on the new algorithm for GIS image pixel topographic factors in remote sensing monitoring ofsoil losses, a software was developed for microcomputer to carry out computation at a medium river basin(county). This ...Based on the new algorithm for GIS image pixel topographic factors in remote sensing monitoring ofsoil losses, a software was developed for microcomputer to carry out computation at a medium river basin(county). This paper lays its emphasis on algorithmic skills and programming techniques as well as applicationof the software.展开更多
Aiming at the shortcoming that certain existing blockingmatching algorithrns, such as full search, three-step search, and dia- mond search algorithms, usually can not keep a good balance between high acoaracy and low ...Aiming at the shortcoming that certain existing blockingmatching algorithrns, such as full search, three-step search, and dia- mond search algorithms, usually can not keep a good balance between high acoaracy and low computational complexity, a block-maching motion estimation algorithm based on two-step search is proposed in this paper. According to the fact that the gray values of adjacent pixels will not vary fast, the algorithm employs an interlaced search pattem in the search window to estimate the motion vector of the objectblock. Simulation and actual experiments demanstrate that the proposed algmithm greatly outperforms the well-known three-step search and dianond search algoritlam, no matter the motion vector is large or small. Comparedc with the full search algorithm, the proposed one achieves similar peffomance but requires much less computation, therefore, the algorithm is well qualified for real-time video image processing.展开更多
Clonal selection feature selection algorithm (CSFS) based on clonal selection algorithm (CSA), a new computational intelligence approach, has been proposed to perform the task of dimensionality reduction in high-d...Clonal selection feature selection algorithm (CSFS) based on clonal selection algorithm (CSA), a new computational intelligence approach, has been proposed to perform the task of dimensionality reduction in high-dimensional images, and has better performance than traditional feature selection algorithms with more computational costs. In this paper, a fast clonal selection feature selection algorithm (FCSFS) for hyperspectral imagery is proposed to improve the convergence rate by using Cauchy mutation instead of non-uniform mutation as the primary immune operator. Two experiments are performed to evaluate the performance of the proposed algorithm in comparison with CSFS using hyperspectral remote sensing imagery acquired by the pushbroom hyperspectral imager (PHI) and the airborne visible/infrared imaging spectrometer (AVlRIS), respectively. Experimental results demonstrate that the FCSFS converges faster than CSFS, hence providing an effective new option for dimensionality reduction of hyperspectral remote sensing imagery.展开更多
文摘根据点和多边形在表示和绘制物体上各自不同的特点,提出了一种有效绘制细节高度复杂物体的多分辨率方法.3D表面被映射到参数平面,经规则采样成为几何图像,P-Quadtrees是基于几何图像建立的四叉树多分辨率层次结构.通过对四叉树的遍历,面向视点的表面用较大多边形面片绘制,光照细节通过法向映射完成;轮廓部分通过视点相关的LOD(level of detail)控制进行细化,使用点来绘制物体复杂精细的轮廓.通过此方法,细节复杂模型的绘制不仅可以被硬件加速,而且无论在表面还是在轮廓部分都能获得很好的视觉效果.
基金Project(60874070) supported by the National Natural Science Foundation of China
文摘To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability.
文摘Based on the new algorithm for GIS image pixel topographic factors in remote sensing monitoring ofsoil losses, a software was developed for microcomputer to carry out computation at a medium river basin(county). This paper lays its emphasis on algorithmic skills and programming techniques as well as applicationof the software.
基金supported by the Lab Open Fund of Beijing Microchemical Research Institute(P2008026EB)
文摘Aiming at the shortcoming that certain existing blockingmatching algorithrns, such as full search, three-step search, and dia- mond search algorithms, usually can not keep a good balance between high acoaracy and low computational complexity, a block-maching motion estimation algorithm based on two-step search is proposed in this paper. According to the fact that the gray values of adjacent pixels will not vary fast, the algorithm employs an interlaced search pattem in the search window to estimate the motion vector of the objectblock. Simulation and actual experiments demanstrate that the proposed algmithm greatly outperforms the well-known three-step search and dianond search algoritlam, no matter the motion vector is large or small. Comparedc with the full search algorithm, the proposed one achieves similar peffomance but requires much less computation, therefore, the algorithm is well qualified for real-time video image processing.
基金Supported by the Major State Basic Research Development Program (973 Program) of China (No. 2009CB723905)the National High Technology Research and Development Program (863 Program) of China (Nos.2009AA12Z114, 2007AA12Z148, 2007AA12Z181)+2 种基金the National Natural Sci-ence Foundation of China(Nos. 40771139,40523005, 40721001)the Research Fund for the Doctoral Program of Higher Education of China(No.200804861058)the Foundation of National Laboratory of Pattern Recognition
文摘Clonal selection feature selection algorithm (CSFS) based on clonal selection algorithm (CSA), a new computational intelligence approach, has been proposed to perform the task of dimensionality reduction in high-dimensional images, and has better performance than traditional feature selection algorithms with more computational costs. In this paper, a fast clonal selection feature selection algorithm (FCSFS) for hyperspectral imagery is proposed to improve the convergence rate by using Cauchy mutation instead of non-uniform mutation as the primary immune operator. Two experiments are performed to evaluate the performance of the proposed algorithm in comparison with CSFS using hyperspectral remote sensing imagery acquired by the pushbroom hyperspectral imager (PHI) and the airborne visible/infrared imaging spectrometer (AVlRIS), respectively. Experimental results demonstrate that the FCSFS converges faster than CSFS, hence providing an effective new option for dimensionality reduction of hyperspectral remote sensing imagery.