期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向元余弦损失的少样本图像分类 被引量:2
1
作者 陶鹏 冯林 +2 位作者 杜彦东 龚勋 王俊 《中国图象图形学报》 CSCD 北大核心 2024年第2期506-519,共14页
目的 度量学习是少样本学习中一种简单且有效的方法,学习一个丰富、具有判别性和泛化性强的嵌入空间是度量学习方法实现优秀分类效果的关键。本文从样本自身的特征以及特征在嵌入空间中的分布出发,结合全局与局部数据增强实现了一种元... 目的 度量学习是少样本学习中一种简单且有效的方法,学习一个丰富、具有判别性和泛化性强的嵌入空间是度量学习方法实现优秀分类效果的关键。本文从样本自身的特征以及特征在嵌入空间中的分布出发,结合全局与局部数据增强实现了一种元余弦损失的少样本图像分类方法(a meta-cosine loss for few-shot image classification,AMCL-FSIC)。方法 首先,从数据自身特征出发,将全局与局部的数据增广方法结合起来,利于局部信息提供更具区别性和迁移性的信息,使训练模型更多关注图像的前景信息。同时,利用注意力机制结合全局与局部特征,以得到更丰富更具判别性的特征。其次,从样本特征在嵌入空间中的分布出发,提出一种元余弦损失(meta-cosine loss,MCL)函数,优化少样本图像分类模型。使用样本与类原型间相似性的差调整不同类的原型,扩大类间距,使模型测试新任务时类间距更加明显,提升模型的泛化能力。结果 分别在5个少样本经典数据集上进行了实验对比,在FC100(Few-shot Cifar100)和CUB(Caltech-UCSD Birds-200-2011)数据集上,本文方法均达到了目前最优分类效果;在MiniImageNet、TieredImageNet和Cifar100数据集上与对比模型的结果相当。同时,在MiniImageNet,CUB和Cifar100数据集上进行对比实验以验证MCL的有效性,结果证明提出的MCL提升了余弦分类器的分类效果。结论 本文方法能充分提取少样本图像分类任务中的图像特征,有效提升度量学习在少样本图像分类中的准确率。 展开更多
关键词 学习 少样本学习(FSL) 度量学习 余弦损失(mcl) 图像分类
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部