Powder mixture of pure Al and oxidized Si C was consolidated into 10%(mass fraction) Si Cp/Al composites at 250 °C by equal channel angular pressing and torsion(ECAP-T). The valence states of Si for Si C part...Powder mixture of pure Al and oxidized Si C was consolidated into 10%(mass fraction) Si Cp/Al composites at 250 °C by equal channel angular pressing and torsion(ECAP-T). The valence states of Si for Si C particulates and Al for the as-consolidated composites were detected by X-ray photoelectron spectroscopy(XPS). The interfacial bondings of the composites were characterized by scanning electron microscopy(SEM). The elements at the interface were linearly scanned by energy dispersive spectroscopy(EDS) and the EDS mappings of Si and Al were also obtained. The values of the nanohardness at different positions within 2 μm from the boundary of Si C particulate were measured. The results show that after ECAP-T, interfacial reaction which inhibits injurious interfacial phase occurs between Al and the oxide layer of Si C, and the element interdiffusion which can enhance interfacial bonding exists between Al and Si C. As ECAP-T passes increase, the reaction degree is intensified and the element interdiffusion layer is thickened, leading to the more smooth transition of the hardness from Si C to Al.展开更多
Previous studies have shown that visual cortical neurons in old mammals exhibit higher spontaneous activity,higher responsiveness to visual stimuli,and lower selectivity for stimulus orientations and motion directions...Previous studies have shown that visual cortical neurons in old mammals exhibit higher spontaneous activity,higher responsiveness to visual stimuli,and lower selectivity for stimulus orientations and motion directions than did neurons in young adult counterparts.However,whether the responsive difference in cortical neurons between young and old animals resulted from different effects induced by anesthetics has remained unclear.To clarify this issue,we recorded the response properties of individual neurons in the primary visual cortex of old and young adult cats while systematically varying the anesthesia level of urethane,a widely used anesthetic in physiology experiments.Our results showed that cumulatively administrating 50 mg and 100 mg of urethane upon the minimal level of urethane required to anesthetize an old or young adult cat did not significantly alter the degree of neuronal response selectivity for stimulus orientations and motion directions nor significantly change the visually-driven response and spontaneous activity of neurons in old and young adult cats.Cumulatively administrating 150 mg of urethane decreased neuronal responsiveness similarly in both age groups.Therefore,urethane appears to exert similar effects on neuronal response properties of old and young adult animals.展开更多
Psychophysical studies suggest that lateral extrastriate visual cortical areas in cats may mediate the sparing of vision largely by network reorganization following lesions of early visual cortical areas. To date, how...Psychophysical studies suggest that lateral extrastriate visual cortical areas in cats may mediate the sparing of vision largely by network reorganization following lesions of early visual cortical areas. To date, however, there is little direct physiological evidence to support this hypothesis. Using in vivo single-anit recording techniques, we examined the response of neurons in areas 19, 21, and 20 to different types of visual stimulation in cats with or without acute bilateral lesions in areas 17 and 18. Our results showed that, relative to the controls, acute lesions inactivated the response of 99.3% of neurons to moving gratings and 93% of neurons to flickering square stimuli'in areas 19, 21, and 20. These results indicated that acute lesions of primary visual areas in adult eats may impair most visual abilities. Sparing of vision in cats with neonatal lesions in early visual cortical areas may result largely from a postoperative reorganization of visual pathways from subcortical nucleus to extrastriate visual cortical areas.展开更多
The copper-regulated gene expression system has been developed to control spacial and temporal expression of transgene in plant. It comprises two parts: (1) ace I gene encoding copper-responsive transcription factor u...The copper-regulated gene expression system has been developed to control spacial and temporal expression of transgene in plant. It comprises two parts: (1) ace I gene encoding copper-responsive transcription factor under the control of a constitutive or organ-specific promoter, and (2) a gene of interest under the control of a chimeric promoter consisting of the CaMV 35S (-90 to +8) promoter linked to the metal responsive element (MRE) carrying activating copper-metallothionein expression (ACE1)-binding sites. Here, the effectiveness of two different ACE1-binding cis -elements which derive from 5'-regulatory region of yeast metallothionein gene was investigated in transgenic tobacco (Nicotiana tabacum L. cv. W38). The results revealed that the MRE (-210 to -126) could increase the system inducibility by 50% - 100% compared with the previously reported MRE (-148 to -105). It is potential to use the copper-inducible system to control valuable gene traits in plant biotechnology.展开更多
Objective To identify the protective effect of lipopolysaccharide (LPS) preconditioning against LPS-induced inflammatory damage in dopaminergic neurons of midbrain slice culture and the possible mechanisms. Methods ...Objective To identify the protective effect of lipopolysaccharide (LPS) preconditioning against LPS-induced inflammatory damage in dopaminergic neurons of midbrain slice culture and the possible mechanisms. Methods After cultured in vitro for 14 d, the rat organotypic midbrain slices were pretreated with different concentrations (0, 1, 3, 6 or 10 ng/mL) of LPS for 24 h followed by treatment with 100 ng/mL LPS for 72 h. The whole slice viability was detelmined by measurement of the activity of lactic acid dehydrogenase (LDH). Tyrosine hydroxylase-immunoreactive (TH-IR) neurons and CD 1 1 b/c equivalent-immunoreactive (OX-42-IR) microglia in the slices were observed by immunohistochemical method, and tumor necrosis factor-α (TNF-α levels in the culture media were detected by enzymelinked immunosorbent assays (ELISA). Results In the slices treated with 100 ng/mL LPS for 72 h, the number of TH-IR neurons reduced from 191± 12 in the control slices to 46±4, and the LDH activity elevated obviously (P 〈 0.01), along with remarkably increased number of OX-42-IR cells and production of TNF-α (P 〈 0.01). Preconditioning with 3 or 6 ng/mL LPS attenuated neuron loss (the number of TH-IR neurons increased to 126± 12 and 180± 13, respectively) and markedly reduced LDH levels (P 〈 0.05), accompanied by significant decreases of OX-42-IR microglia activation and TNF-α production (P 〈 0.05). Conclusion Low-dose LPS preconditioning could protect dopaminergic neurons against inflammatory damage in rat midbrain slice culture, and inhibition of microglial activation and reduction of the proinflammatory factor TNF-α production may contribute to this protective effect. Further understanding the underlying mechanism of LPS preconditioning may open a new window for treatment of Parkinson's disease.展开更多
At relatively high cellulose mass concentrations(8%,10%,and 12%),homogeneous acetylation of cellulose was carried out in an ionic liquid,1-allyl-3-methylimidazolium chloride(AmimCl).Without using any catalyst,cellulos...At relatively high cellulose mass concentrations(8%,10%,and 12%),homogeneous acetylation of cellulose was carried out in an ionic liquid,1-allyl-3-methylimidazolium chloride(AmimCl).Without using any catalyst,cellulose acetates(CAs)with the degree of substitution(DS)in a range from 0.4 to 3.0 were synthesized in one-step.The effects of reaction time,temperature and molar ratio of acetic anhydride/anhydroglucose unit(AGU) in cellulose on DS value of CAs were investigated.The synthesized CAs were characterized by means of FT-IR, NMR,and solubility,mechanical and thermal tests.After the acetylation,the used ionic liquid AmimCl was easily recycled and reused.This study shows the potential of the homogeneous acetylation of cellulose at relatively high concentrations in ionic liquids in future industrial applications.展开更多
The present exploration is conducted to describe the motion of viscous fluid embedded in squeezed channel under the applied magnetics effects.The processes of heat and mass transport incorporate the temperature-depend...The present exploration is conducted to describe the motion of viscous fluid embedded in squeezed channel under the applied magnetics effects.The processes of heat and mass transport incorporate the temperature-dependent binary chemical reaction with modified Arrhenius theory of activation energy function which is not yet disclosed for squeezing flow mechanism.The flow,heat and mass regime are exposed to be governed via dimensionless,highly non-linear,ordinary differential equations (ODEs) under no-slip walls boundary conditions.A well-tempered analytical convergent procedure is adopted for the solutions of boundary value problem.A detailed study is accounted through graphs in the form of flow velocity field,temperature and fluid concentration distributions for various emerging parameters of enormous interest.Skin-friction,Nusselt and Sherwood numbers have been acquired and disclosed through plots.The results indicate that fluid temperature follows an increasing trend with dominant dimensionless reaction rate σ and activation energy parameter E.However,an increment in σ and E parameters is found to decline in fluid concentration.The current study arises numerous engineering and industrial processes including polymer industry,compression and injection shaping,lubrication system,formation of paper sheets,thin fiber,molding of plastic sheets.In the area of chemical engineering,geothermal engineering,cooling of nuclear reacting,nuclear or chemical system,bimolecular reactions,biochemical process and electrically conducting polymeric flows can be controlled by utilizing magnetic fields.Motivated by such applications,the proposed study has been developed.展开更多
Intravenous anesthetics are known to cause amnesia, but the underlying molecular mechanisms remain elusive. To identify a possible molecular mechanism, we recently turned our attention to a key intracellular signaling...Intravenous anesthetics are known to cause amnesia, but the underlying molecular mechanisms remain elusive. To identify a possible molecular mechanism, we recently turned our attention to a key intracellular signaling pathway organized by a family of mitogen-activated protein kinases (MAPKs). As a prominent synapse-to-nucleus superhighway, MAPKs couple surface glutamate receptors to nuclear transcriptional events essential for the development and/or maintenance of different forms of synaptic plasticity (long-term potentiation and long-term depression) and memory formation. To define the role of MAPK-dependent transcription in the amnesic property of anesthetics, we conducted a series of studies to examine the effect of a prototype intravenous anesthetic propofol on the MAPK response to N-methyl-D-aspartate receptor (NMDAR) stimulation in hippocampal neurons. Our results suggest that propofol possesses the ability to inhibit NMDAR-mediated activation of a classic subclass of MAPKs, extracellular signal-regulated protein kinase 1/2 (ERK1/2). Concurrent inhibition of transcriptional activity also occurs as a result of inhibited responses of ERK1/2 to NMDA. These findings provide first evidence for an inhibitory modulation of the NMDAR-MAPK pathway by an intravenous anesthetic and introduce a new avenue to elucidate a transcription-dependent mechanism processing the amnesic effect of anesthetics.展开更多
The ACE (angiotensin converting enzyme) inhibitors are not only drugs widely prescribed drugs in cardiovascular diseases, but also potentially therapeutic agents in dementia. Based on the findings that the ACE inhib...The ACE (angiotensin converting enzyme) inhibitors are not only drugs widely prescribed drugs in cardiovascular diseases, but also potentially therapeutic agents in dementia. Based on the findings that the ACE inhibitors could activate the c-Jun N-terminal kinase signal to increase the ACE gene expression and that the Alu element of the human ACE gene involved in regulating ACE promoter activity, we aimed to investigate whether there are different pharmacogenetic responses of ACE I/D polymorphism to the ACE inhibitors in neurons. The three reporter vectors, pACEpro(0-SEAP, p-I-ACEpro-SEAP, and p-D-ACEpro-SEAP were used to examine the transcriptional activity of the vectors responding to the lisinopril treatment using a transient-transfection method in SH-SY5Y cells. Our results showed that lisinopril increased the promoter activity of an ACE gene by 16.7%. Additionally, we found the lisinopril enhanced the ACE promoter activity of the I-form vector by 17.2%, but adversely reduced that of the D-form vector by 16.8%, as compared with the respective control without the lisinopril treatment. Firstly, our findings had proved that the UD polymorphism of ACE gene contrarily responds to the ACE inhibitors in regulating the ACE expression in neurons, which provide a novel insight suggesting genetic testing to tailor the treatment regimens in AD (Alzheimer's disease) patients.展开更多
The formation and the growth of Cu-Sn intermetallic compound (IMC) layer at the interface between Sn-3.0Ag-0.5Cu-xCe solder and Cu substrate during soldering and aging were studied. The results show that Cu6Sn5 IMC is...The formation and the growth of Cu-Sn intermetallic compound (IMC) layer at the interface between Sn-3.0Ag-0.5Cu-xCe solder and Cu substrate during soldering and aging were studied. The results show that Cu6Sn5 IMC is observed at the interface between solder and Cu substrate in all conditions. After aging for 120 h,the Cu3Sn IMC is then obtained. With increasing aging time,the scalloped Cu6Sn5 structure changes to a plate structure. The Cu3Sn film always forms with a relatively planar interface. By adding a small amount of the rare earth element Ce (only 0.1%,mass fraction) into the Sn-3.0Ag-0.5Cu solder alloy,the growth rate of the Cu-Sn IMC at the interface of solder alloy system is decreased. When the time exponent is approximately 0.5,the growth of the IMC layer is mainly controlled by a diffusion over the studied time range.展开更多
基金Project(51175138)supported by the National Natural Science Foundation of ChinaProjects(2012HGZX0030,2013HGCH0011)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20100111110003)supported by the Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘Powder mixture of pure Al and oxidized Si C was consolidated into 10%(mass fraction) Si Cp/Al composites at 250 °C by equal channel angular pressing and torsion(ECAP-T). The valence states of Si for Si C particulates and Al for the as-consolidated composites were detected by X-ray photoelectron spectroscopy(XPS). The interfacial bondings of the composites were characterized by scanning electron microscopy(SEM). The elements at the interface were linearly scanned by energy dispersive spectroscopy(EDS) and the EDS mappings of Si and Al were also obtained. The values of the nanohardness at different positions within 2 μm from the boundary of Si C particulate were measured. The results show that after ECAP-T, interfacial reaction which inhibits injurious interfacial phase occurs between Al and the oxide layer of Si C, and the element interdiffusion which can enhance interfacial bonding exists between Al and Si C. As ECAP-T passes increase, the reaction degree is intensified and the element interdiffusion layer is thickened, leading to the more smooth transition of the hardness from Si C to Al.
基金Supported by Natural Science Foundation of Anhui Province (070413138)the Key Research Foundation of Anhui Province Education Department (KJ2009A167)
文摘Previous studies have shown that visual cortical neurons in old mammals exhibit higher spontaneous activity,higher responsiveness to visual stimuli,and lower selectivity for stimulus orientations and motion directions than did neurons in young adult counterparts.However,whether the responsive difference in cortical neurons between young and old animals resulted from different effects induced by anesthetics has remained unclear.To clarify this issue,we recorded the response properties of individual neurons in the primary visual cortex of old and young adult cats while systematically varying the anesthesia level of urethane,a widely used anesthetic in physiology experiments.Our results showed that cumulatively administrating 50 mg and 100 mg of urethane upon the minimal level of urethane required to anesthetize an old or young adult cat did not significantly alter the degree of neuronal response selectivity for stimulus orientations and motion directions nor significantly change the visually-driven response and spontaneous activity of neurons in old and young adult cats.Cumulatively administrating 150 mg of urethane decreased neuronal responsiveness similarly in both age groups.Therefore,urethane appears to exert similar effects on neuronal response properties of old and young adult animals.
基金National Natural Science Foundation of China (31171082)Natural Science Foundation of Anhui Province (070413138)Key Research Foundation of Anhui Province Education Department (KJ2009A167)
文摘Psychophysical studies suggest that lateral extrastriate visual cortical areas in cats may mediate the sparing of vision largely by network reorganization following lesions of early visual cortical areas. To date, however, there is little direct physiological evidence to support this hypothesis. Using in vivo single-anit recording techniques, we examined the response of neurons in areas 19, 21, and 20 to different types of visual stimulation in cats with or without acute bilateral lesions in areas 17 and 18. Our results showed that, relative to the controls, acute lesions inactivated the response of 99.3% of neurons to moving gratings and 93% of neurons to flickering square stimuli'in areas 19, 21, and 20. These results indicated that acute lesions of primary visual areas in adult eats may impair most visual abilities. Sparing of vision in cats with neonatal lesions in early visual cortical areas may result largely from a postoperative reorganization of visual pathways from subcortical nucleus to extrastriate visual cortical areas.
文摘The copper-regulated gene expression system has been developed to control spacial and temporal expression of transgene in plant. It comprises two parts: (1) ace I gene encoding copper-responsive transcription factor under the control of a constitutive or organ-specific promoter, and (2) a gene of interest under the control of a chimeric promoter consisting of the CaMV 35S (-90 to +8) promoter linked to the metal responsive element (MRE) carrying activating copper-metallothionein expression (ACE1)-binding sites. Here, the effectiveness of two different ACE1-binding cis -elements which derive from 5'-regulatory region of yeast metallothionein gene was investigated in transgenic tobacco (Nicotiana tabacum L. cv. W38). The results revealed that the MRE (-210 to -126) could increase the system inducibility by 50% - 100% compared with the previously reported MRE (-148 to -105). It is potential to use the copper-inducible system to control valuable gene traits in plant biotechnology.
基金the Foundation of Beijing Municipal Commission of Education,China (No.200410025011)
文摘Objective To identify the protective effect of lipopolysaccharide (LPS) preconditioning against LPS-induced inflammatory damage in dopaminergic neurons of midbrain slice culture and the possible mechanisms. Methods After cultured in vitro for 14 d, the rat organotypic midbrain slices were pretreated with different concentrations (0, 1, 3, 6 or 10 ng/mL) of LPS for 24 h followed by treatment with 100 ng/mL LPS for 72 h. The whole slice viability was detelmined by measurement of the activity of lactic acid dehydrogenase (LDH). Tyrosine hydroxylase-immunoreactive (TH-IR) neurons and CD 1 1 b/c equivalent-immunoreactive (OX-42-IR) microglia in the slices were observed by immunohistochemical method, and tumor necrosis factor-α (TNF-α levels in the culture media were detected by enzymelinked immunosorbent assays (ELISA). Results In the slices treated with 100 ng/mL LPS for 72 h, the number of TH-IR neurons reduced from 191± 12 in the control slices to 46±4, and the LDH activity elevated obviously (P 〈 0.01), along with remarkably increased number of OX-42-IR cells and production of TNF-α (P 〈 0.01). Preconditioning with 3 or 6 ng/mL LPS attenuated neuron loss (the number of TH-IR neurons increased to 126± 12 and 180± 13, respectively) and markedly reduced LDH levels (P 〈 0.05), accompanied by significant decreases of OX-42-IR microglia activation and TNF-α production (P 〈 0.05). Conclusion Low-dose LPS preconditioning could protect dopaminergic neurons against inflammatory damage in rat midbrain slice culture, and inhibition of microglial activation and reduction of the proinflammatory factor TNF-α production may contribute to this protective effect. Further understanding the underlying mechanism of LPS preconditioning may open a new window for treatment of Parkinson's disease.
基金Supported by the National Basic Research Program of China(2009CB219901)
文摘At relatively high cellulose mass concentrations(8%,10%,and 12%),homogeneous acetylation of cellulose was carried out in an ionic liquid,1-allyl-3-methylimidazolium chloride(AmimCl).Without using any catalyst,cellulose acetates(CAs)with the degree of substitution(DS)in a range from 0.4 to 3.0 were synthesized in one-step.The effects of reaction time,temperature and molar ratio of acetic anhydride/anhydroglucose unit(AGU) in cellulose on DS value of CAs were investigated.The synthesized CAs were characterized by means of FT-IR, NMR,and solubility,mechanical and thermal tests.After the acetylation,the used ionic liquid AmimCl was easily recycled and reused.This study shows the potential of the homogeneous acetylation of cellulose at relatively high concentrations in ionic liquids in future industrial applications.
文摘The present exploration is conducted to describe the motion of viscous fluid embedded in squeezed channel under the applied magnetics effects.The processes of heat and mass transport incorporate the temperature-dependent binary chemical reaction with modified Arrhenius theory of activation energy function which is not yet disclosed for squeezing flow mechanism.The flow,heat and mass regime are exposed to be governed via dimensionless,highly non-linear,ordinary differential equations (ODEs) under no-slip walls boundary conditions.A well-tempered analytical convergent procedure is adopted for the solutions of boundary value problem.A detailed study is accounted through graphs in the form of flow velocity field,temperature and fluid concentration distributions for various emerging parameters of enormous interest.Skin-friction,Nusselt and Sherwood numbers have been acquired and disclosed through plots.The results indicate that fluid temperature follows an increasing trend with dominant dimensionless reaction rate σ and activation energy parameter E.However,an increment in σ and E parameters is found to decline in fluid concentration.The current study arises numerous engineering and industrial processes including polymer industry,compression and injection shaping,lubrication system,formation of paper sheets,thin fiber,molding of plastic sheets.In the area of chemical engineering,geothermal engineering,cooling of nuclear reacting,nuclear or chemical system,bimolecular reactions,biochemical process and electrically conducting polymeric flows can be controlled by utilizing magnetic fields.Motivated by such applications,the proposed study has been developed.
文摘Intravenous anesthetics are known to cause amnesia, but the underlying molecular mechanisms remain elusive. To identify a possible molecular mechanism, we recently turned our attention to a key intracellular signaling pathway organized by a family of mitogen-activated protein kinases (MAPKs). As a prominent synapse-to-nucleus superhighway, MAPKs couple surface glutamate receptors to nuclear transcriptional events essential for the development and/or maintenance of different forms of synaptic plasticity (long-term potentiation and long-term depression) and memory formation. To define the role of MAPK-dependent transcription in the amnesic property of anesthetics, we conducted a series of studies to examine the effect of a prototype intravenous anesthetic propofol on the MAPK response to N-methyl-D-aspartate receptor (NMDAR) stimulation in hippocampal neurons. Our results suggest that propofol possesses the ability to inhibit NMDAR-mediated activation of a classic subclass of MAPKs, extracellular signal-regulated protein kinase 1/2 (ERK1/2). Concurrent inhibition of transcriptional activity also occurs as a result of inhibited responses of ERK1/2 to NMDA. These findings provide first evidence for an inhibitory modulation of the NMDAR-MAPK pathway by an intravenous anesthetic and introduce a new avenue to elucidate a transcription-dependent mechanism processing the amnesic effect of anesthetics.
文摘The ACE (angiotensin converting enzyme) inhibitors are not only drugs widely prescribed drugs in cardiovascular diseases, but also potentially therapeutic agents in dementia. Based on the findings that the ACE inhibitors could activate the c-Jun N-terminal kinase signal to increase the ACE gene expression and that the Alu element of the human ACE gene involved in regulating ACE promoter activity, we aimed to investigate whether there are different pharmacogenetic responses of ACE I/D polymorphism to the ACE inhibitors in neurons. The three reporter vectors, pACEpro(0-SEAP, p-I-ACEpro-SEAP, and p-D-ACEpro-SEAP were used to examine the transcriptional activity of the vectors responding to the lisinopril treatment using a transient-transfection method in SH-SY5Y cells. Our results showed that lisinopril increased the promoter activity of an ACE gene by 16.7%. Additionally, we found the lisinopril enhanced the ACE promoter activity of the I-form vector by 17.2%, but adversely reduced that of the D-form vector by 16.8%, as compared with the respective control without the lisinopril treatment. Firstly, our findings had proved that the UD polymorphism of ACE gene contrarily responds to the ACE inhibitors in regulating the ACE expression in neurons, which provide a novel insight suggesting genetic testing to tailor the treatment regimens in AD (Alzheimer's disease) patients.
基金Project(06GK2002) supported by the Major Project of Hunan Provincial Science and Technology Development Strategy
文摘The formation and the growth of Cu-Sn intermetallic compound (IMC) layer at the interface between Sn-3.0Ag-0.5Cu-xCe solder and Cu substrate during soldering and aging were studied. The results show that Cu6Sn5 IMC is observed at the interface between solder and Cu substrate in all conditions. After aging for 120 h,the Cu3Sn IMC is then obtained. With increasing aging time,the scalloped Cu6Sn5 structure changes to a plate structure. The Cu3Sn film always forms with a relatively planar interface. By adding a small amount of the rare earth element Ce (only 0.1%,mass fraction) into the Sn-3.0Ag-0.5Cu solder alloy,the growth rate of the Cu-Sn IMC at the interface of solder alloy system is decreased. When the time exponent is approximately 0.5,the growth of the IMC layer is mainly controlled by a diffusion over the studied time range.