The bark of Pteroce/tis tatarinowii is a raw material for manufacturing XuanPaper. The effects of Ca^(2+) concentrations on the accumulation of mineral elements in the bark,leaf and root of Pteroceltis tatarinowii wer...The bark of Pteroce/tis tatarinowii is a raw material for manufacturing XuanPaper. The effects of Ca^(2+) concentrations on the accumulation of mineral elements in the bark,leaf and root of Pteroceltis tatarinowii were studied under controlled conditions. The types ofHoagland nutrient solution with three Ca^(2+) concentrations levels (200, 400 and 600 μg·g^(-1))and a control (without Ca^(2+)) were designed to culture Pteroceltis tatarinowii. After 6 months,contents of seven mineral elements including Ca, K, Mg, Mn, Zn, Cu and Na in the root, leaf and barkwere analyzed. The results indicated that Ca accumulations content in the root, leaf and bark hadpositively relation with Ca^(2+) concentrations (200, 400, 600 μg · g^(-1)), and the order of theCa content in the three components was root>leaf>bark. Ca content in the root treated with 600 μg·g^(-1) Ca^(2+) concentrations was 5.5 times as high as that of the control, and about 1.4 times ashigh as that of the root treated in 200 and 400 μg/g Ca^(2+) concentrations respectively. On thecontrary, K and Mg contents in the root, leaf and bark were negatively related to Ca^(2+)concentrations, especially in the bark, and their accumulation trend followed the order ofleaf>root>bark. K content in the bark treated with 600 μg ·g^(-1) Ca^(2+) concentrations was 39.3%of that of the control, and was 79.0% and 91.8% of that of the bark treated with 200 μg ·g^(-1)and 400 μg ·g^(-1) Ca^(2+) concentrations respectively; Mg content in the bark treated with 600μg ·g^(-1) Ca^(2+) concentrations was 23.4% of that of the control, and was 27.1% and 35.4% ofthat of the bark treated with 200 and 400 μg·g^(-1) Ca^(2+) concentrations respectively. Comparedwith the control, the general tendency of Mn, Zn and Cu content decreased with increasing of Ca^(2+)concentrations and their contents were in the order: root>leaf>bark. Based on the results of thisstudy, the experiment has been useful for providing academic bases in improving the bark quality ofPteroceltis tatarinowii on non-limestone soil.展开更多
Aims Leaf nutrient resorption is sensitive to changes in soil nutrients.However,the effects of N deposition on nutrient resorption efficiency(NuRE)in plant macro-nutrients remain unclear.Poplar(Populus deltoids)is one...Aims Leaf nutrient resorption is sensitive to changes in soil nutrients.However,the effects of N deposition on nutrient resorption efficiency(NuRE)in plant macro-nutrients remain unclear.Poplar(Populus deltoids)is one of the most extensively cultivated hardwood species worldwide.We explored general patterns and dominant drivers of NuRE and stoichiometry of poplar plantations in response to N addition.Methods We conducted a 4-year N-addition experiment to explore NuRE and stoichiometric responses to N addition in two poplar(P.deltoids)plantations(8-and 12-year-old stands)in a coastal region of eastern China.We measured soil and foliar(green and senesced leaves)concentrations of nitrogen(N),phosphorus(P),potassium(K),calcium(Ca)and magnesium(Mg)for a series of N addition treatments including N_(0)(0 kg N ha^(−1)yr^(−1)),N_(1)(50 kg N ha^(−1)yr^(−1)),N_(2)(100 kg N ha^(−1)yr^(−1)),N_(3)(150 kg N ha^(−1)yr^(−1))and N_(4)(300 kg N ha^(−1)yr^(−1)).Important Findings Consistent for(both)8-and 12-year-old stands,N addition did not affect the NuRE and stoichiometry(with the exception of CaRE and CaRE:MgRE ratio).N resorption efficiency–P resorption efficiency(NRE–PRE)scaling slopes were consistently less than 1.0 under N addition.These results suggest that NRE generally decouples from PRE within each N treatment.Moreover,these results point to robust control of green leaf nutritional status on nutrient resorption processes as indicated by the positive relationships between NuRE and green leaf nutrient concentrations.Our findings provided a direct evidence that growth in 12-year-old poplar plantations was N-limited in the coastal region of eastern China.展开更多
基金This paper is supported by National Natural Science Foundation of China (No. 39970608).
文摘The bark of Pteroce/tis tatarinowii is a raw material for manufacturing XuanPaper. The effects of Ca^(2+) concentrations on the accumulation of mineral elements in the bark,leaf and root of Pteroceltis tatarinowii were studied under controlled conditions. The types ofHoagland nutrient solution with three Ca^(2+) concentrations levels (200, 400 and 600 μg·g^(-1))and a control (without Ca^(2+)) were designed to culture Pteroceltis tatarinowii. After 6 months,contents of seven mineral elements including Ca, K, Mg, Mn, Zn, Cu and Na in the root, leaf and barkwere analyzed. The results indicated that Ca accumulations content in the root, leaf and bark hadpositively relation with Ca^(2+) concentrations (200, 400, 600 μg · g^(-1)), and the order of theCa content in the three components was root>leaf>bark. Ca content in the root treated with 600 μg·g^(-1) Ca^(2+) concentrations was 5.5 times as high as that of the control, and about 1.4 times ashigh as that of the root treated in 200 and 400 μg/g Ca^(2+) concentrations respectively. On thecontrary, K and Mg contents in the root, leaf and bark were negatively related to Ca^(2+)concentrations, especially in the bark, and their accumulation trend followed the order ofleaf>root>bark. K content in the bark treated with 600 μg ·g^(-1) Ca^(2+) concentrations was 39.3%of that of the control, and was 79.0% and 91.8% of that of the bark treated with 200 μg ·g^(-1)and 400 μg ·g^(-1) Ca^(2+) concentrations respectively; Mg content in the bark treated with 600μg ·g^(-1) Ca^(2+) concentrations was 23.4% of that of the control, and was 27.1% and 35.4% ofthat of the bark treated with 200 and 400 μg·g^(-1) Ca^(2+) concentrations respectively. Comparedwith the control, the general tendency of Mn, Zn and Cu content decreased with increasing of Ca^(2+)concentrations and their contents were in the order: root>leaf>bark. Based on the results of thisstudy, the experiment has been useful for providing academic bases in improving the bark quality ofPteroceltis tatarinowii on non-limestone soil.
基金This study is financially supported by the Natural Science Key Fund for Colleges and Universities of Jiangsu Province of China(17KJA180006)the Six Talent Peaks Program of Jiangsu Province(JY-041 and TD-XYDXX-006)+1 种基金the'5151'Talent Program of Nanjing Forestry University,the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),the Doctorate Fellowship Foundation of Nanjing Forestry University,the Research Innovation Program for College Graduates of Jiangsu Province(KYLX16_0833)the Scientific and Technological Innovation Program for College Students of Nanjing Forestry University(DXSKC-201617).
文摘Aims Leaf nutrient resorption is sensitive to changes in soil nutrients.However,the effects of N deposition on nutrient resorption efficiency(NuRE)in plant macro-nutrients remain unclear.Poplar(Populus deltoids)is one of the most extensively cultivated hardwood species worldwide.We explored general patterns and dominant drivers of NuRE and stoichiometry of poplar plantations in response to N addition.Methods We conducted a 4-year N-addition experiment to explore NuRE and stoichiometric responses to N addition in two poplar(P.deltoids)plantations(8-and 12-year-old stands)in a coastal region of eastern China.We measured soil and foliar(green and senesced leaves)concentrations of nitrogen(N),phosphorus(P),potassium(K),calcium(Ca)and magnesium(Mg)for a series of N addition treatments including N_(0)(0 kg N ha^(−1)yr^(−1)),N_(1)(50 kg N ha^(−1)yr^(−1)),N_(2)(100 kg N ha^(−1)yr^(−1)),N_(3)(150 kg N ha^(−1)yr^(−1))and N_(4)(300 kg N ha^(−1)yr^(−1)).Important Findings Consistent for(both)8-and 12-year-old stands,N addition did not affect the NuRE and stoichiometry(with the exception of CaRE and CaRE:MgRE ratio).N resorption efficiency–P resorption efficiency(NRE–PRE)scaling slopes were consistently less than 1.0 under N addition.These results suggest that NRE generally decouples from PRE within each N treatment.Moreover,these results point to robust control of green leaf nutritional status on nutrient resorption processes as indicated by the positive relationships between NuRE and green leaf nutrient concentrations.Our findings provided a direct evidence that growth in 12-year-old poplar plantations was N-limited in the coastal region of eastern China.